

Application
Programming

Interfaces

http://www.gar.no/hostlinks/

GLAPI
HOST LINKS

TM
G&R

SDK

Microsoft, Windows, MS, MS-DOS are registered trademarks of Microsoft Corp.

IBM and PC are registered trademarks of IBM Corp.
UNIX is a registered trademark in the United States and other
countries, licensed exclusively through X/Open Company, Ltd.

Any other product names are trademarks of their respective owners.

Version 6.6
© Gallagher & Robertson as 1990-2013

All Rights Reserved

GALLAGHER & ROBERTSON AS, Kongens gate 23, N- 0153 Oslo, Norway
Tel: +47 23357800

www: http://www.gar.no/
e-mail: support@gar.no

 Contents

Gallagher & Robertson GlAPI i

Contents

Host Links GlAPI ... 1
Installation.. 1
Host Links Product Overview .. 1

Terminal environment... 1
Server environment ... 2

Scope of the product... 3
Run-time prerequisites.. 3
Run-time licenses ... 4
GlAPI architecture.. 5

The GlAPI subroutine libraries... 7
The Gline API .. 7
The CPI-C API ... 7
The CPI-C 3270 API .. 8
The CPI-C 5250 API .. 8
The CPI-C 7800 API .. 8
The CPI-C DKU API ... 9

Files delivered with GlAPI... 11

Gline API ... 15
Gline API Programming Issues .. 15

Architecture... 15
Exporting and importing sessions between applications............................... 17
Programming in a Windows multi-threaded environment 17

Gline API variables and definitions.. 19
external variables .. 19
definitions.. 19
enclosure_t type .. 20

Gline API functions list .. 21
Gline API functions.. 23

line_initialize... 23
line_release.. 24
line_get_lid.. 25
line_switch .. 26
line_init_params.. 27
line_parameter... 28
line_start.. 29

Contents

ii GlAPI Gallagher & Robertson

line_startimport ... 30
line_stop.. 31
line_stopexport.. 32
line_stopkeep .. 33
line_get.. 34
line_unget.. 36
line_put ... 37
line_putc.. 39
line_puts .. 40
line_write .. 41
line_wait.. 42
line_wait_lid.. 44
line_input_available .. 46
line_connected .. 47
line_our_turn... 48
line_simultaneous.. 49
line_demand_turn.. 50
line_select.. 51
line_waitcallback... 52
line_init_keepalive .. 54
line_send_keepalive .. 55

CPI-C APIs.. 57
Architecture.. 57
CPI-C 3270... 59
CPI-C 5250... 60
CPI-C 7800... 61
CPI-C DKU.. 62
CPI-C compatibility ... 63
CPI-C States & State-transitions .. 64
CPI-C API variables and definitions .. 65

SIDEINFO structure.. 65
CPIC_FIELD_INFO structure .. 66
definitions.. 66

CPI-C API functions list... 67
CPI-C Emulation API functions list ... 68
CPI-C functions.. 69

Accept_Conversation (cmaccp) .. 69
Allocate (cmallc)... 71
Deallocate (cmdeal) .. 73
Get_Field_Info (cmfld) ... 75
Initialize_Conversation (cminit) ... 77
Prepare_To_Receive (cmptr) .. 79
Receive (cmrcv) .. 80

 Contents

Gallagher & Robertson GlAPI iii

Request_To_Send (cmrts) ... 84
Send_Data (cmsend) ... 86
Send_Error (cmserr).. 88
Set_Conversation_Type (cmsct) ... 90
Set_Deallocate_Type (cmsdt) ... 92
Set_Mode_Name (cmsmn).. 94
Set_Partner_LU_Name (cmspln) .. 96
Set_Prepare_To_Receive_Type (cmsptr).. 98
Set_Receive_Type (cmsrt) .. 100
Set_Send_Type (cmsst)... 102
Set_Sync_Level (cmssl).. 104
Set_TP_Name (cmstpn) .. 106
Set_Conversation_Security_Type (cmscst) .. 108
Set_Conversation_Security_User_ID (cmscsu) .. 110
Set_Conversation_Security_Password (cmscsp)... 112
Set_CPIC_Side_Information (xcmssi) .. 114
Set_Conversation_Security_Type (xcscst).. 116
WinCPICIsBlocking ... 118
WinCPICSetBlockingHook .. 119
WinCPICUnhookBlockingHook... 120
WinCPICStartup ... 121
WinCPICCleanup.. 122
api_msg ... 123

CPI-C 3270: keyboard input... 124
CPI-C 5250: keyboard input... 127
CPI-C 7800: keyboard input... 130
CPI-C DKU: keyboard input .. 133
CPI-C configuration file: cpic.cfg .. 136
CPI-C API Parameters.. 139
CPI-C Emulation API Parameters .. 140

Troubleshooting .. 141
GlAPI tracefile ... 141
CPI-C tracefile.. 141
Line handler trace file... 142
When connecting through Ggate .. 142
Trace file names ... 143

Sample Gline API programs.. 145
apitest.c: One host session.. 145
apitest2.c: Two host sessions.. 147
apiserv.c: Server session... 151
apiclnt.c: Client session .. 154

Contents

iv GlAPI Gallagher & Robertson

glapitst.pl: Perl example ... 157

Sample CPI-C API programs.. 159
cpicline.c: Connection to TSS on GCOS8.. 159
cpicserv.c: Server session... 163
cpicclnt.c: Client session .. 168

Sample CPI-C 3270 API programs... 173
cpictest.c: Connection to IBM host .. 173
cpictst.pl: Perl example .. 176

Sample CPI-C 5250 API programs... 177
cpictest.c: Connection to IBM host .. 177
cpictst.pl: Perl example .. 180

Sample CPI-C DKU API programs .. 181
dkuiof.c: Connection to IOF on GCOS7 host... 181
dkutss.c: Connection to TSS on GCOS8 host .. 184
SimpleCpicCGI.pl: Simple procedural Perl/CGI connection to GCOS 8 host....... 186
FancyCpicCGI.pl: Simple OO Perl/CGI connection to GCOS 8 host.................... 189

Appendix: Host Links Manuals... 193

Appendix: Host Links Server Administration............................. 195

Appendix: G&R/DSA utilities ... 197
Gconame ... 197
Gerror .. 198
Glnode... 198
Gmacfix... 198
Gping... 198
Grnode... 199
Gtrace.. 199
Gtsupd ... 199

Appendix: Host Links trace... 201
Trace activation .. 201
Trace types ... 201
Structure ... 202
Tracing Ggate ... 203
Examples - G&R products.. 203
CPI-C and Gweb trace files.. 205

 Contents

Gallagher & Robertson GlAPI v

Appendix: OSI/DSA Return Codes and Error Messages 207
OSI/DSA error codes.. 207
Windows Sockets error Codes.. 219

Contents

vi GlAPI Gallagher & Robertson

 GlAPI

Gallagher & Robertson GlAPI 1

Host Links GlAPI

Installation
The G&R emulations and gateways are independent programs, but part of the
G&R Host Links product set available on all major UNIX/Linux platforms.
Many of the products are also available for Windows servers. For details on
platforms supported, software delivery and installation refer to the Host Links
Installation and Configuration manual.

Host Links Product Overview

Terminal environment

Host links products that run on UNIX or Linux servers with a terminal driven
user interface include emulators and concentrators, as well as various utilities.

• G3270 provides synchronous IBM3270 functionality. G3270 emulates
IBM LU type 2, including base and extended colour together with
extended highlighting.

• Qsim provides synchronous Questar terminal functionality. Qsim
simulates all Questar models, including the DKU7007, DKU7107,
DKU7105 and DKU7211 (Mono, four colour A/B and seven
colour modes are supported). It also simulates the VIP7760 and the
VIP7700.

• V78sim provides Bull VIP78xx (BDS) functionality. V78sim emulates all
models of the VIP7800 family; the actual reference is the BDS7.
All visual attributes including colour are supported.

• Pthru provides transparent VIP7800 visibility to Bull mainframes for
users with asynchronous VIP7800 terminals or emulators. The
terminals are used in text or forms mode.

GlAPI

2 GlAPI Gallagher & Robertson

Server environment

Host Links products that run on UNIX, Linux or Windows servers.

• Ggate is a transparent gateway to the Bull native network. It avoids all
need for Front-ends (MainWay/Datanet) or other gateways. It can
be used to connect G&R/Glink (for Windows or Java) emulators
or any of the emulators, concentrators, network printer emulators
and file transfer clients/servers in the Host Links product set. It
also supports third party clients using the TNVIP, TN3270,
TN3270E and standard asynchronous Telnet protocols.

• Gweb provides a web browser interface to any host application that is
otherwise accessible using the Host Links Qsim, V78sim, or
G3270 emulations.

• Gspool is designed to run as an unattended process and accept transparent
print output from any type of host application (GCOS8, GCOS7,
GCOS6, IBM) that normally sends print data to network printers
(ROPs), or to a remote spooling system (DPF8-DS). On the
Gspool system the print may be directed to a physical printer or to
the local spooling system. Gspool operates in different modes,
Connect mode, Terminal Writer mode, DPF8 mode, SNM mode,
IBM mode, TN3270 mode and TN3270E mode.

• GUFT is a G&R implementation of the Bull UFT file transfer protocols. It
enables transfer of data files between Host Links and GCOS systems
over a DSA network.

• Gproxy is a network management program used for supervision,
management, load balancing and license sharing of G&R Host
Links applications. Gproxy can be set up as a freestanding
monitor program and/or report generator in a small network, or
play a bigger role in a larger network.

• Gsftp is a transparent gateway between two different File Transfer proto-
cols: FTP (RFC 959) and SFTP (the SSH File Transfer Protocol).
The purpose is to present a seamless integration between the two
protocols, with automatic conversion.

 GlAPI

Gallagher & Robertson GlAPI 3

Scope of the product
G&R/GlAPI is a set of Application Programmatic Interfaces to the G&R/Gline
set of data communications line handlers. The API provides standard
communications interfaces to data communication applications that is
independent of the characteristics of the underlying network. The Gline line
handlers support the following types of communications networks:

Asynchronous Direct or modem connected

X.25 Native or PAD

TCP/IP Dial-up, ISDN, leased line, Telnet, TN3270, TN5250,
TNVIP

DSA/OSI DSA and DSA/ISO Work Station (DIWS) over OSI
networks

DSA/RFC1006 DSA and DSA/ISO Work Station (DIWS) over TCP/IP
networks

GlAPI is used internally by all the communication application in the G&R Host
Links product set. Several software development houses as well as individual
data processing departments also use GlAPI when developing communications
applications.

Run-time prerequisites
Any applications utilizing the G&R/GlAPI subroutine libraries requires the
following G&R run-time packages to be installed in order to be able to execute.

All API's Gline run-time.

The Gline run-time package is not required if your API programs are to
connect via a G&R/Ggate transparent gateway which then takes care of the
communication to the host system. Please note that if you already have other
G&R communications or emulation packages installed such as Ggate, Guft,
Gweb, Qsim, G3270 etc., then the Gline run-time may already be
installed.

The run-time pre-requisites for the various APIs are as follows:

GlAPI

4 GlAPI Gallagher & Robertson

Gline API Gline run-time only

CPI-C API CPI-C run-time

CPI-C 3270 API CPI-C 3270 run-time

CPI-C 5250 API CPI-C 5250 run-time

CPI-C 7800 API CPI-C 7800 run-time

CPI-C DKU API CPI-C DKU run-time.

Run-time licenses
In order to run customer applications utilizing the G&R/GlAPI subroutine
libraries, one or more of the following license keys must be present in your
/usr/gar/config/licenses file:

License key Description
basic For the base G&R run-time system

sdkglapi For GlAPI SDK

glapi For GlAPI run-time

The licenses file identifies the G&R distributor, the owner of the license and the
licensed products. The license key for a product will normally state how many
users or simultaneous sessions the product is licensed for. If a limitation is
specified in the license, only the licensed number of users or sessions can be
active at any time.

 GlAPI

Gallagher & Robertson GlAPI 5

GlAPI architecture
GlAPI provides six different programmatic interfaces: Gline API, CPI-C API,
CPI-C 3270 API, CPI-C 5250 API, CPI-C 7800 API and CPI-C DKU API.

If the line handler runs on the same platform as the application using the Gline
API, then the inter-process communication between the API and the line handler
will be based on pipes. When connecting to Bull GCOS systems, the old front-
ends require that the connection be made using DSA session over OSI-transport.
If the network is router-based TCP/IP, you can place a G&R/Ggate gateway
equipped with an OSI-stack at the central site, and connect via Ggate using the
G&R/Ggate protocol over the TCP/IP network.

OSI Layers 1 - 4

Gline API

CPI-C
API

G&R Ggate
Protocol

G&R
Line handler

G&R
Line handler

OSI Layers 1 - 4

G&R
Line handler

G&R
Line handler

Ggate

TCP/IP socket connection
to remote Ggate

Pipe connection
to local line handlers

5250
CPI-C
API

3270
CPI-C
API

7800
CPI-C
API

DKU
CPI-C
API

User
Appl.

User
Appl.

User
Appl.

User
Appl.

User
Appl.

User
Appl.

OSI Layers 1 - 4

Gline API

CPI-C
API

G&R Ggate
Protocol

G&R
Line handler

G&R
Line handler

OSI Layers 1 - 4

G&R
Line handler

G&R
Line handler

Ggate

TCP/IP socket connection
to remote Ggate

Pipe connection
to local line handlers

5250
CPI-C
API

3270
CPI-C
API

7800
CPI-C
API

DKU
CPI-C
API

User
Appl.

User
Appl.

User
Appl.

User
Appl.

User
Appl.

User
Appl.

GlAPI

6 GlAPI Gallagher & Robertson

 GlAPI

Gallagher & Robertson GlAPI 7

The GlAPI subroutine
libraries

The UNIX G&R Host Links GlAPI subroutine libraries contain all the
necessary interface routines that your application needs in order to be able to
execute with their corresponding GlAPI run-time modules. The Windows
version of the GlAPI subroutine libraries dynamically links to the run-time
DLL's that contain the actual API subroutines.

The Gline API
This interface is used by all the applications in the G&R Host Links product
set. It is a flexible and powerful interface consisting of a set of ‘line services’ that
makes the characteristics of the underlying communication routines on the Host
Links platforms transparent to the calling application. Line services are
requested simply by calling them from the application program.

The CPI-C API
This interface operates on a higher level than the Gline APIs and is aimed at
simple application-to-application transactional communication. It is a subset of
the X/Open CPI-C/OSI primitives set and provides the necessary functions in
order to connect, disconnect, send and receive data to/from a host application.

GlAPI

8 GlAPI Gallagher & Robertson

The CPI-C 3270 API
This interface is a programmatic interface to the G&R IBM3270 emulation
called G3270. It provides a subset of X/Open CPI-C primitives just as the CPI-C
API does but in this case using IBM3270 presentation. Data from the host system
is processed by the IBM3270 emulation routines and delivered by the API to the
application in a virtual screen format. The application passes data to the API in a
keyboard buffer format. The emulation is handled completely by the API and no
control sequences are delivered to the application. All function keys, including
send- and edit-keys, are supported.

The CPI-C 5250 API
This interface is a programmatic interface to the G&R IBM5250 emulation
called G5250. It provides a subset of X/Open CPI-C primitives just as the CPI-C
API does but in this case using IBM5250 presentation. Data from the host system
is processed by the IBM5250 emulation routines and delivered by the API to the
application in a virtual screen format. The application passes data to the API in a
keyboard buffer format. The emulation is handled completely by the API and no
control sequences are delivered to the application. All function keys, including
send- and edit-keys, are supported.

The CPI-C 7800 API
This interface is a programmatic interface to the G&R VIP7800 emulation called
V78sim. It provides a subset of X/Open CPI-C primitives just as the CPI-C API
does but in this case using VIP7800 presentation. Data from the host system is
processed by the VIP7800 emulation routines and delivered by the API to the
application in a virtual screen format. The application passes data to the API in a
keyboard buffer format. The emulation is handled completely by the API and no
control sequences are delivered to the application. All function keys, including
send- and edit-keys, are supported.

 GlAPI

Gallagher & Robertson GlAPI 9

The CPI-C DKU API
This interface is a programmatic interface to the G&R Questar, VIP7700 and
VIP7760 emulation called Qsim. It provides a subset of X/Open CPI-C
primitives just as the CPI-C API does but in this case using DKU, VIP7700 or
VIP7760 presentation. Data from the host system is processed by the emulation
routines and delivered by the API to the application in a virtual screen format.
The application passes data to the API in a keyboard buffer format. The
emulation is handled completely by the API and no control sequences are
delivered to the application. All function keys, including send- and edit-keys, are
supported.

NOTE
Any application using GlAPI can only be used in conjunction with their correspon-
ding GlAPI or emulation CPI-C run-time module. These run-time modules must be
installed when running the application. The G&R/GlAPI Run-time license
covers the total number of concurrent sessions of all APIs in use.

GlAPI

10 GlAPI Gallagher & Robertson

 GlAPI

Gallagher & Robertson GlAPI 11

Files delivered with GlAPI
glapi.h Include file. To be included in all applications using the

Gline API library.

cpic.h Include file. To be included in all applications using any of
the CPI-C API libraries.

apitest.c Example Gline API program using one logical line.

apitest2.c Example Gline API program using two logical lines.

apiclnt.c Example Gline API program using one logical line.

apiserv.c Example Gline API program using two logical lines.

cpicline.c Example CPI-C API program connecting to TSS.

cpictest.c Example CPI-C 3270 API program.

cpictst.pl Example CPI-C API program in Perl

cpicclnt.c Example CPI-C API client program connecting to
cpicserv.c

cpicserv.c Example CPI-C API server program accepting connection
from cpicclnt.c

dkuiof.c Example CPI-C DKU API program for GCOS7 access

dkutss.c Example CPI-C DKU API program for GCOS8 access

glapitst.pl Example Gline API program in Perl

UNIX only

libglapi.a Object library of Gline line handler API functions.

libglcpic.a Object library of CPI-C line handler API functions.

libgl3270.a Object library of CPI-C 3270 API functions.

libgl5250.a Object library of CPI-C 5250 API functions.

libgl7800.a Object library of CPI-C 7800 API functions

GlAPI

12 GlAPI Gallagher & Robertson

libglqsim.a Object library of CPI-C DKU API functions.

Makefile Makefile for compilation of example programs.

Windows only

glapi.hlp
glapi.cnt

GlAPI on-line help

vc32.bat Batch file to compile and link the test programs with
Microsoft C 32-bit compilers

wincpic.h Include file. To be included in all applications using any of
the Windows CPI-C API functions.

glapim32.lib VC++ static link library to access glapi32.dll

gcpicm32.lib VC++ static link library to access wcpic32.dll

g3270m32.lib VC++ static link library to access cpic3270.dll

g5250m32.lib VC++ static link library to access cpic5250.dll

g7800m32.lib VC++ static link library to access cpic7800.dll

gdkum32.lib VC++ static link library to access cpicdku.dll

 GlAPI

Gallagher & Robertson GlAPI 13

Perl interface modules

Glapi.pm
Glapi.so/.dll

Gline line handler API functions Perl module and
shared library

Cpic.pm
Cpic.so/.dll

CPI-C line handler API functions Perl module
module and shared library

Cpic3270.pm
Cpic3270.so/.dll

CPI-C 3270 API functions Perl module module and
shared library

Cpic5250.pm
Cpic5250.so/.dll

CPI-C 5250 API functions Perl module module and
shared library

Cpic7800.pm
Cpic7800.so/.dll

CPI-C 7800 API functions Perl module module and
shared library

CpicDku.pm
CpicDku.so/.dll

CPI-C DKU API functions Perl module module and
shared library

NOTE
The cpic.cfg configuration example and the below DLL’s are delivered with the
GlAPI Run-time package and installed in the c:\gar\bin32 directory.

glapi32.dll 32-bit Gline API DLL.

wcpic32.dll 32-bit CPI-C DLL.

cpic3270.dll 32-bit CPI-C 3270 DLL

cpic5250.dll 32-bit CPI-C 5250 DLL

cpic7800.dll 32-bit CPI-C 7800 DLL

cpicdku.dll 32-bit CPI-C DKU DLL

gapidb32.dll 32-bit Gline API DLL for debugging

GlAPI

14 GlAPI Gallagher & Robertson

 GlAPI

Gallagher & Robertson GlAPI 15

Gline API

Application

line_start line_stop line_get line_put

Gline API

Host Links line handler: DSA/DIWS/TCP/X25/TTY

Gline API Programming Issues

Architecture

An application using the Gline API will at run-time connect to a Gline line
handler module. The application and the line handler are separate executables.
The first call an application should use is line_initialize(), and the last,
line_release() .

The application starts the line handler with a function call, line_start()

line_start():

• Starts a line handler based on the parameters previously delivered to the
API by calls to line_init_parameter().

• The line handler runs as a separate process and may send and receive data
to and from the host while the application carries out other tasks.

GlAPI

16 GlAPI Gallagher & Robertson

• If the line handler is a local one, i.e. runs on the same system as the
application, then two pipes will be created for communication between
the application and the line handler.

• If the line handler is a remote one, i.e. communicating through a Ggate
gateway running on another system, then a TCP/IP socket is created and
connection to Ggate is established. Ggate then starts the line handler.
Communication between the application and the line handler is then
carried out over the TCP/IP socket.

• The line handler can be one of the following:

Line handler Communication type Comms. API

gl_dsa DSA or DSA/ISO WorkStation
(DIWS) session over OSI
transport

XTI, TLI

 DSA or DSA/ISO WorkStation
(DIWS) session over RFC1006
(G&R OSI TP0 over TCP/IP)

Sockets

gl_tcp ‘Raw’ TCP/IP Sockets

 Telnet Sockets

 TNVIP client Sockets

 TN3270 client Sockets

 TN5250 client Sockets

gl_x25 PAD Provider specific

 ‘Raw’ X25 Provider specific

gl_tty Asynchronous line Basic OS

The line handler is chosen by giving one of the following parameters to
Gline: -LI DSA, -LI DIWS, -LI TCP, -LI X25 or -LI TTY.

A remote line handler is chosen by giving a parameter in the form -LI
DSA:gateway where ‘gateway’ is the symbolic name or IP address of the
Ggate system. Other than the form of the parameter used to start the remote line
handler there is absolutely no difference between using a local or a remote line
handler.

 GlAPI

Gallagher & Robertson GlAPI 17

Several line handlers may be started by the application. A unique logical line
identifier (LID) is associated with each line to distinguish one line from another.

Exporting and importing sessions between
applications

The Gline API allows you to pass sessions between applications. This is done via
the line_stopexport() function which returns a session identifier which
may then be used in the line_startimport() function in another program.

Programming in a Windows multi-threaded
environment

line_initialize()/line_release() only needs to be called once per
application and must be the first and last functions called.

The DLL is not completely thread-safe, however with a few precautions you can
happily program multiple threads accessing multiple GlAPI session line ids (lid).
You should never have multiple threads accessing the same lid simultaneously.

The lids are indexes to a table and there is a 'static' internal variable that contains
the value of the current lid. The line_switch() function can be used to
select any specific lid.

This current lid value obviously gets changed when the line_switch()
function is called, so there is conflict if a second thread calls this function before
the first thread has called the GlAPI function it required.

Each lid has all it's necessary internal variables in an allocated structure amongst
which are the buffers returned by the line_get() function, so no buffer
copying is required.

The line functions are not very CPU consuming, and apart from startup
line_start() and receive line_get() they are not blocking.

The receive functions are only blocking if there is no data, so only calling them if
data is available solves that function. line_input_available(),
line_wait_lid() or line_wait() can be used to check for incoming
data. As line_wait_lid() gets supplied the lid value, this is thread safe and
therefore no semaphore will be needed.

GlAPI

18 GlAPI Gallagher & Robertson

So the above means that you can write multi-thread programs with the small
restriction that GlAPI functions should not be called simultaneously. As they are
not time-consuming, then this should not hinder execution speed nor cause a
bottle neck.

The following code is none time consuming and safe:

 void a_thread_function(int lid)
 {
 /* not need for thread semaphor here */
 if (line_wait_lid(lid, 200) == lid) {
 /* now we need a semaphore */
 reserve_glapi_mutex()
 line_switch(lid)
 line_get(...)
 line_put(...)
 release_glapi_mutex()
 }
 }

You will need to use the line_switch() before every function which does
not take lid as a parameter.

If you're program is event driven, either by message or timer, then it could also
do something like this:

 void a_thread_event(int lid)
 {
 /* we need a semaphore */
 reserve_glapi_mutex()
 line_switch(lid)
 if (line_input_available()) {
 line_get(...)
 line_put(...)
 }
 release_glapi_mutex()
 }

The remaining problem is the line_start() function. This function may be
slightly time consuming. It will be more noticeable for Ggate connections over
the LAN than local connections to the DSA/DIWS G&R Listener (nl_dsa) line
handlers.

The only 100% safe solution for line_start() is to block the GlAPI during
the whole line_start() function. However, the first thing this function does
is to pick up the lid pointer from the current lid value, once it has this pointer, the
rest of the function including the connection is thread safe. This means that in
most situations it would reasonably safe to have a separate mutex for
line_start() and only wait for the mutex for a short time. This obviously
isn’t 100% safe.

 GlAPI

Gallagher & Robertson GlAPI 19

Another few points of interest are that the line variables:

 extern char line_error[LINEERR_SIZE + 1];
 extern char line_function[2];
 extern int line_device_status;
 extern int line_device_address;

These are not thread safe, so you would need to copy them if needed before you
release the your GlAPI mutex. You only need to copy the line_error[] variable if
a line function reports an actual error.

Gline API variables and definitions

external variables

The Gline API supplies several variables for general information.

SYNOPSIS (C)

#define LINEERR_SIZE 200
extern int line_device_status;
extern int line_device_address;
extern char line_function[2];
extern char line_error[LINEERR_SIZE + 1];

SYNOPSIS (PERL)

($status, $address, $func1, $func2) = Glapi::VIPHeader();
$error_text_string = Glapi::Errmsg();

definitions

SYNOPSIS (C)

#define true 1
#define TRUE 1
#define false 0
#define FALSE 0
typedef char boolean;

GlAPI

20 GlAPI Gallagher & Robertson

enclosure_t type

SYNOPSIS (C)

typedef enum { e_none, e_segment, e_message,
e_group, e_turn, e_unused, e_attmsg } enclosure_t;

SYNOPSIS (PERL)

$Glapi::e_none, $Glapi::e_segment, $Glapi::e_message,
$Glapi::e_group, $Glapi::e_turn, $Glapi::e_attmsg

Enclosure Description
e_none No enclosure.

Internal transfer between line module and application.
e_segment End of segment.

Returned when the host has split the record into several
segments and this is not the last one. The host keeps the
turn.

e_message End of message.
Returned when the host is sending several records
(messages) and this is not the last one. The host keeps the
turn.

e_group End of message group.
Returned when the host sends the final record (message)
and gives the application the turn. Hosts using DSA
session may send one or several records (messages, each
split into several segments) before giving the turn to the
application.

e_attmsg Attention message from line module.
Returned when the line module reports different kinds of
events. If line_function[1] == 0,it is an
informational message, if != 0, it is an error message.
Note that an error on output (line_put()) will be
reported on the next call to line_get(). After an
attention message has been received, you can use the
function line_connected() to check if the
connection was taken up or down.

 GlAPI

Gallagher & Robertson GlAPI 21

Gline API functions list
Function Prototype

initializes the line handler API boolean line_initialize();

terminates the line handler API void line_release();

get logical line id (LID) boolean line_get_lid();

change logical line (LID) void line_switch();

Obsolete function to provide
line handler startup parameters

int line_init_params();

Give line handler parameters void line_parameter();

Start line handler int line_start();

Imports a session from a line
module

int line_startimport();

stop line handler void line_stop();

exports the line module session void line_stopexport();

stop line handler, but keep all
line parameters given for this
LID

void line_stopkeep();

collect input from line int line_get();

insert data at the beginning of
the line buffer

boolean line_unget();

write data to line void line_put();

write character to line void line_putc();

write string to line void line_puts();

write buffer to line void line_write();

wait for line input int line_wait();

wait for lid line input int line_wait_lid();

check if input on line boolean
line_input_available();

check whether line is up or not boolean line_connected();

GlAPI

22 GlAPI Gallagher & Robertson

Function Prototype

check if it is our turn boolean line_our_turn();

check for two-way
simultaneous session

boolean line_simultaneous();

demand turn from line void line_demand_turn();

check status of logical line id
(LID).

void line_select();

sets line_wait() callback
function.

void line_waitcallback();

Initiates keep alive logic void line_init_keepalive();

Sends keep alive packet void line_send_keepalive();

 GlAPI

Gallagher & Robertson GlAPI 23

Gline API functions

line_initialize

NAME

line_initialize - initializes the line handler API

SYNOPSIS (C)

boolean GLAPI line_initialize (
 const char * prog,
 int id,
 const char * ver);

SYNOPSIS (PERL)

$rc = Glapi::Initialize($prog, $id, $ver);

DESCRIPTION

This function must be the first function called before using any other of the
line handler API calls. This function allocates internal memory necessary for
the GlAPI. The prog and ver parameters must be NULL, and the ver must
be ZERO.

If the API is being called by a DLL, then the DLL must call this function
once for each application. If the API is being called from a DDL that needs to
share sessions between applications, it must link the DLL to the glapd.lib
library that in turn loads the glapd.dll. Session sharing is restricted to
Windows 16-bit applications only.

RETURN VALUE

Returns false on failure, otherwise true is returned on success.

SEE ALSO

line_release()

GlAPI

24 GlAPI Gallagher & Robertson

line_release

NAME

line_release - terminates the line handler API

SYNOPSIS (C)

void GLAPI line_release (void);

SYNOPSIS (PERL)

Glapi::Release();

DESCRIPTION

This function must be the last function called to the line handler API. This
function liberates any internal memory.

If the API is being called by a DLL, then the DLL must call this function
once for each application.

RETURN VALUE

No return value.

SEE ALSO

line_initialize()

 GlAPI

Gallagher & Robertson GlAPI 25

line_get_lid

NAME

line_get_lid - get an available line id

SYNOPSIS (C)

boolean GLAPI line_get_lid (
 int * lid);

SYNOPSIS (PERL)

$lid = Glapi::Get_lid();

DESCRIPTION

When the application starts and uses several lines, this function can be used
to ensure unique identification of the different lines. The application will
propose a line id value in *lid, and line_get_lid() will check
whether it is available or not. If it is, the same value is returned in *lid.
Otherwise line_get_lid() will return another valid lid in *lid. The
function will use the value in *lid as a starting point and search upwards
for an available lid. The line id can take values from 0 to 63.

RETURN VALUE

A value of 1 (true) is returned when an available lid was found. This lid could
be the value suggested or the next available. When no lid is available
between the suggested value and 63, the function returns the value of 0
(false).

SEE ALSO

line_switch()

GlAPI

26 GlAPI Gallagher & Robertson

line_switch

NAME

line_switch - switch to another line

SYNOPSIS (C)

void GLAPI line_switch (
 int lid);

SYNOPSIS (PERL)

Glapi::Switch($lid);

DESCRIPTION

The application may start and use several lines. To distinguish one line from
another, a unique logical line identifier (lid) must be chosen for each line
started. From the applications point of view, the only difference between
these lines is the lid value. To address a specific line (lid), the application
must first switch to that lid with the line_switch(lid) call. Subsequent
calls to the line module will address that lid until a new
line_switch(lid) call is issued.

For applications using one line only, the line_switch(lid) call may be
omitted, and the default lid value of zero will then be used. If
line_get_lid() has been called, to get a valid lid, the application should
also call line_switch() with that lid.

RETURN VALUE

No return value.

SEE ALSO

line_get_lid()

 GlAPI

Gallagher & Robertson GlAPI 27

line_init_params

NAME

line_init_params - set up line parameters (before starting it)

SYNOPSIS (C)

int GLAPI line_init_params (
 char * parameter);

SYNOPSIS (PERL)

$rc = Glapi::Init_params($parameter);

DESCRIPTION

Before issuing the line_start() call, the application must specify which
line module to start. This can be done by the use of
line_init_params(), but this function has now become obsolete since
all line parameters can be delivered by the line_parameter() function.
The supplied parameters will be saved and can be used for the next
line_start() call for the same lid. The actual parameter values are kept
when line_stopkeep() is used, and released when line_stop() is
called.

Examples:

line_init_params("-LI");
line_init_params("DSA");
line_init_params("-MN");
line_init_params("TEST");

RETURN VALUE

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1
is returned. The application should terminate if the value is not zero.

SEE ALSO

line_parameter()

GlAPI

28 GlAPI Gallagher & Robertson

line_parameter

NAME

line_parameter - send parameter to the line module (after startup)

SYNOPSIS (C)

void GLAPI line_parameter (
 char * parameter_type,
 char * parameter_value);

SYNOPSIS (PERL)

Glapi::Parameter($parameterType, $parameterValue);

DESCRIPTION

This function accepts any line control parameter and delivers it to the line
module. This function can be used at any time, and is used to change a
parameter in the line module. This function should be used in all new
applications to set initial line handler parameters and to change its setting
after startup.

The function reads the parameter type and the parameter value as to separate
strings, i.e.

line_parameter("-HM", "DPS8");

RETURN VALUE

A boolean value of 1 (true) is returned if the function has been performed. A
value of 0 (false) is returned if the function cannot be performed

SEE ALSO

line_init_params()

 GlAPI

Gallagher & Robertson GlAPI 29

line_start

NAME

line_start - start the line module

SYNOPSIS (C)

int GLAPI line_start(void);

SYNOPSIS (PERL)

$rc = Glapi::Start();

DESCRIPTION

This call starts the specified line handler as a new process. This process will
remain active until line_stop() or line_stopkeep() is called. In
test situations this means that the process may live after the application
program has aborted. The application should use line_get_lid() and/or
line_switch() to set up the correct line number if more than one line
module is started. The line_parameter() function must have been
called at least once in order to identify the line handler to be started.

RETURN VALUE

Upon successful completion, a value of 0 is returned. Otherwise, a value
different from zero is returned.

ERRORS

If line_start() fails to start the specified line handler, it returns a value
different from 0 and line_error will contain a message describing the
reason.

SEE ALSO

line_startimport(), line_get_lid(), line_switch(),
line_parameter(), line_stop(), line_stopexport(),
line_stopkeep()

GlAPI

30 GlAPI Gallagher & Robertson

line_startimport

NAME

line_startimport – imports a session from a line module

SYNOPSIS (C)

int GLAPI line_startimport(
 char * export_name);

SYNOPSIS (PERL)

$rc = Glapi::Startimport($exportName);

DESCRIPTION

This call imports a session from an existing line handler process. The
export_name input parameter must contain a valid session identifier
returned from the line_stopexport() function. On success, the
imported session will be in the same state as when the previous process
exported it.

RETURN VALUE

Upon successful completion, a value of 0 is returned. Otherwise, a value
different from zero is returned.

ERRORS

If line_startimport() fails to connect to the specified line handler, it
returns a value different from 0 and line_error will contain a message
describing the reason. This function will fail if the line handler has terminated
due to the timeout supplied in the line_stopexport() function.

SEE ALSO

line_start(), line_stop(), line_stopexport(),
line_stopkeep()

 GlAPI

Gallagher & Robertson GlAPI 31

line_stop

NAME

line_stop - stop line module

SYNOPSIS (C)

void GLAPI line_stop(void);

SYNOPSIS (PERL)

Glapi::Stop();

DESCRIPTION

This function should be called when the host session on a selected line has
been closed and the application wishes to stop the line module. It must be
called before terminating the application. It will free local memory used for
startup parameters. The program should use the line_switch() function
to set up the correct line number if more than one line module has been
started.

RETURN VALUE

No return value.

SEE ALSO

line_start(), line_startimport(), line_stopexport(),
line_stopkeep()

GlAPI

32 GlAPI Gallagher & Robertson

line_stopexport

NAME

line_stopexport – exports the line module session

SYNOPSIS (C)

int GLAPI line_stopexport (
 int timeout,
 char * export_name,
 int buflen);

SYNOPSIS (PERL)

($exportName, $rc) = Glapi::Stopexport($timeout);

DESCRIPTION

This function is similar to calling line_stop() function except that the
line module is not terminated. A session identifier is returned in the
export_name buffer. This identifier may then be used by another process
to import the session using line_startimport().The timeout
parameter specifies the number of seconds the line module should wait for a
process to import the session. If this timeout expires, the line module will
automatically close the session and terminate. The buflen parameter must
be initialized with the size of the export_name buffer length. The returned
export_name is a normal null terminated string.

RETURN VALUE

This is the length of the string returned in the export_name variable.

ERRORS

A return value of 0 indicates an error, and line_error will contain a
message describing the reason.

SEE ALSO

line_start(), line_startimport(), line_stop(),
line_stopkeep()

 GlAPI

Gallagher & Robertson GlAPI 33

line_stopkeep

NAME

line_stopkeep - stop line module

SYNOPSIS (C)

void GLAPI line_stopkeep(void);

SYNOPSIS (PERL)

Glapi::Stopkeep();

DESCRIPTION

This function should be called when the host session on a selected line has
been closed and the application wishes to stop the line module. It must be
called before terminating the application. Local memory used for startup
parameters will be kept. This means that any parameters passed using
line_parameter() and line_init_params() calls before
line_start() will be available the next time the application issues a call
to the line_start()function. The program should use the
line_switch() function to set up the correct line number if more than
one line module has been started.

RETURN VALUE

No return value.

SEE ALSO

line_start(), line_startimport(), line_stop(),
line_stopexport()

GlAPI

34 GlAPI Gallagher & Robertson

line_get

NAME

line_get - collect input from line

SYNOPSIS (C)

int GLAPI line_get (
 char ** buffer,
 enclosure_t * enclosure);

SYNOPSIS (PERL)

($buffer, $enclosure) = Glapi::Get();

DESCRIPTION

This call should be used when the application expects data from the host. If
no input is available, the application will be suspended until it is. All error
reporting from the line module is done through this call, including errors
from previous send.

Note that the application may receive a remote connect in addition to remote
data. A remote connect is presented to the application as an attention message
with line_function[1] == 0. The application may use the
line_wait() call to wait for a remote connect. If the application has
started several line modules, the line_wait() may be useful as it reports
back the lid for which input is available.

The number of characters available at the address given by *buffer is
given as the return value of line_get(). The enclosure level is delivered
in *enclosure, which can take the values defined in the table on page 20.

The external variables line_device_address, line_function[],
and line_device_status will contain the VIP Line Protocol Header if
supported by the line protocol used. Otherwise these variables should be
ignored.

 GlAPI

Gallagher & Robertson GlAPI 35

It is important to note that the line module notifies the application only when
delivering the first message block: after a call to line_get(), the
application should always call line_input_available() to check if
all available data has been read. If the application receives data on a line
without reading it, a subsequent call to line_wait() may not "see" these
data. line_wait() will work reliably only if the application always reads
all the data from the line buffers. You should also note that when the
application has made a call to line_unget() since the previous call to
line_get() the next line_get() will return immediately without
waiting for new data from the line handler. The line buffer will then contain
the unget data followed by any new data available from the line handler.

RETURN VALUE

The number of characters available in the buffer is returned

SEE ALSO

line_unget(), line_input_available()

GlAPI

36 GlAPI Gallagher & Robertson

line_unget

NAME

line_unget - insert data at the beginning of the line buffer

SYNOPSIS (C)

boolean GLAPI line_unget (
 char * buffer,
 int size);

SYNOPSIS (PERL)

$rc = Glapi::Unget($buffer,$size);

DESCRIPTION

This inserts data in the line handler’s input buffer. The inserted unget data is
delivered to the application as the first size bytes of data when it makes the
next call to line_get(). Only one call to line_unget() is allowed
before reading the data with line_get(). Calling with size 0 clears the
unget buffer. After a call to line_unget(), line_get() will not block
waiting for new data from the line handler, but return the unget data.
line_input_available() or line_wait() should be used to wait
for new data.

The line_unget() function is typically used when the buffer delivered
by line_get() ends with an incomplete control sequence and you want to
delay the interpretation until the rest of the sequence is available.

RETURN VALUE

A value of 1 (true) is returned if the line_unget() function has been
performed. A value of 0 (false) is returned if the line_unget() function
cannot be performed for reasons like: a line_unget() operation has
already been performed, the size is greater than the maximum unget size (80
bytes) or the size is less than 0.

SEE ALSO

line_get(), line_input_available()

 GlAPI

Gallagher & Robertson GlAPI 37

line_put

NAME

line_put - write data to the line

SYNOPSIS (C)

void GLAPI line_put (
 char * buffer,
 int buffer_length,
 enclosure_t enclosure);

SYNOPSIS (PERL)

Glapi::Put($buffer, $length, $enclosure);

DESCRIPTION

This function is used for sending text to the host, and to issue commands to
the line modules.

The line module interpret some text strings as special commands:

$*$CN [parameters] Connect to a remote system.

$*$DIS Disconnect an established connection.

$*$BRK Send break/attention message to host.

Users familiar with other Gallagher & Robertson communication products
will find that the same format is used in the end user applications. See the
line handler sections for further details on this.

If the remote side is initiating the session, the addressed GLAPI application
will be notified of the incoming session connect request by an attention
message. For more information see the line_get() call on page 34.

The connect request may be refused for all of the normal reasons. The error
will be reported through the line_get() call, because an error on send
will normally not be detected until some time later.

GlAPI

38 GlAPI Gallagher & Robertson

This philosophy is used for all send errors, also those occurring when sending
normal application text. The application program must be programmed
accordingly. This means that for a normal two-way alternate session the
application must issue a receive request after a send, and will receive either
text or an error message from the send. If the program is intended to work
asynchronously, i.e. carry out other tasks while waiting for a host reply, calls
to line_input_available() can be used to test if input is available.

Two-way simultaneous (data collection) applications must be programmed
accordingly. Since the host is not required to answer input, the program
MUST NOT do a receive until input is available.

This function reads three parameters: buffer, buffer_length and
enclosure. "buffer" holds the address of the first character to be sent,
and "buffer_length" the number of characters to be sent. Refer to the
line_write() documentation on page 41 for the meaning of the
"enclosure" variable.

The external variables line_function[], line_device_address
and line_device_status will contain the VIP Line Protocol Header if
supported by the line protocol used. Otherwise these variables should be
ignored.

RETURN VALUE

The function returns an integer. If positive it is the number of characters
written to the line. The function can return a negative integer indicating an
error:

-1 - internal error (line map not found)
-2 - buffer too big (>64KB)
-3 - can't allocate buffer space (out of memory)

SEE ALSO

line_putc(), line_puts(), line_write(), line_our_turn(),
line_simultaneous()

 GlAPI

Gallagher & Robertson GlAPI 39

line_putc

NAME

line_putc - write a character to the line

SYNOPSIS (C)

void GLAPI line_putc (
 char c);

SYNOPSIS (PERL)

Glapi::Putc($char);

DESCRIPTION

Move one byte to the line module buffer. The buffered data will not be sent
to the host until a line_write() or line_put() that flushes the data
is called.

In this way it is possible to build up the send buffer one character at a time
before actually sending it to the host.

RETURN VALUE

The function returns an integer. If positive it is the number of characters
written to the line. The function can return a negative integer indicating an
error:

-1 - internal error (line map not found)
-2 - buffer too big (>64KB)
-3 - can't allocate buffer space (out of memory)

SEE ALSO

line_put(), line_puts(), line_write(), line_our_turn(),
line_simultaneous()

GlAPI

40 GlAPI Gallagher & Robertson

line_puts

NAME

line_puts - write a string to the line

SYNOPSIS (C)

void GLAPI line_puts (
 char * buffer,
 int bufferlength);

SYNOPSIS (PERL)

Glapi::Puts($buffer, $length);

DESCRIPTION

Move a string to the line module buffer. The buffered data will not be sent to
the host until a line_write() or line_put() that flushes the data is
called.

In this way it is possible to build up the send buffer one string at a time
before actually sending it to the host.

RETURN VALUE

The function returns an integer. If positive it is the number of characters
written to the line. The function can return a negative integer indicating an
error:

-1 - internal error (line map not found)
-2 - buffer too big (>64KB)
-3 - can't allocate buffer space (out of memory)

SEE ALSO

line_put(), line_putc(), line_write(), line_our_turn(),
line_simultaneous()

 GlAPI

Gallagher & Robertson GlAPI 41

line_write

NAME

line_write - write data to line

SYNOPSIS (C)

void GLAPI line_write (
 enclosure_t enclosure);

SYNOPSIS (PERL)

Glapi::Write($enclosure);

DESCRIPTION

This function forces a write of the current buffer to the line. The parameter,
enclosure, specifies the enclosure level, and can take the values defined in the
table on page 20.

RETURN VALUE

No return value.

SEE ALSO

line_put(), line_putc(), line_puts()

GlAPI

42 GlAPI Gallagher & Robertson

line_wait

NAME

line_wait - wait for line input

SYNOPSIS (C)

int GLAPI line_wait (
 int time-out);

SYNOPSIS (PERL)

$lid = Glapi::Wait($timeout);

DESCRIPTION

This call may be used by an application that wishes to wait for any line input
within a specified time period. This call may be very useful if the application
has started several line modules. Upon return from this call, the application
will be notified which line, if any, has line input. The time-out interval is
given in seconds. A negative time-out e.g. -1 suspends the application
indefinitely until an event occurs. The special value of zero allows the
application to make a single 'poll' of the lines without suspending.

It is important to note that this call suspends the application in a passive wait.

In the UNIX version it can however be interrupted by signals and it will
return 99 when a signal has interrupted its execution.

In the Windows version, the line_waitcallback() function can be
used to set up a function that will be called to handle Windows messages
received while in the line_wait() function. If the callback function
returns FALSE after handling a Windows message, the line_wait() will
exit with the return value of 99.

It is the applications responsibility to recognize whether line_wait() was
interrupted by the above or not.

If there is data available when this function is called, it will return
immediately.

 GlAPI

Gallagher & Robertson GlAPI 43

RETURN VALUE

The function will return the logical identifier (lid) of the line module having
input available. If time-out, -1 will be returned. Return value of 99 indicates
that an error has occurred.

ERRORS

If 99 is returned if a fatal error occurred and the application should call
line_stop() or line_stopkeep(), unless the function has been
interrupted under your own control by a signal or callback.

SEE ALSO

line_get(), line_input_available()

GlAPI

44 GlAPI Gallagher & Robertson

line_wait_lid

NAME

line_wait_lid - wait for line input from one lid

SYNOPSIS (C)

int GLAPI line_wait_lid (
 int lid,
 int time-out);

SYNOPSIS (PERL)

$lid = Glapi::Wait_lid($lid, $timeout);

DESCRIPTION

This call may be used by an application that wishes to wait for line input on a
specific lid within a specified time period. This call may be very useful if the
application has started several line modules but is interested in input from a
specific one of them. Upon return from this call, the application will be
notified if the lid has line input. The time-out period is specified by a number
of seconds.

It is important to note that this call will suspend the application in a passive
wait.

In the UNIX version it can however be interrupted by signals and it will
return 99 when a signal has interrupted its execution.

In the Windows version, the line_waitcallback() function can be
used to set up a function that will be called to handle Windows messages
received while in the line_wait_lid() function. If the callback function
returns FALSE after handling a Windows message, the
line_wait_lid() will exit with the return value of 99.

It is the applications responsibility to recognize whether
line_wait_lid() was interrupted by the above or not.

If there is data available when this function is called, it will return
immediately.

 GlAPI

Gallagher & Robertson GlAPI 45

RETURN VALUE

The function will return the logical identifier (lid) of the line module having
input available. If time-out, -1 will be returned. Return value of 99 indicates
that an error has occurred.

ERRORS

If 99 is returned if a fatal error occurred and the application should call
line_stop() or line_stopkeep(), unless the function has been
interrupted under your own control by a signal or callback.

SEE ALSO

line_get(), line_input_available()

GlAPI

46 GlAPI Gallagher & Robertson

line_input_available

NAME

line_input_available - check if input on line

SYNOPSIS (C)

boolean GLAPI line_input_available(void);

SYNOPSIS (PERL)

$available = Glapi::Input_available();

DESCRIPTION

This function can be used by the application to check if text or an error
message is available from the line module for processing. The use of this call
before doing a call to line_get(), will avoid the application being
suspended to wait until input is available. For two way simultaneous sessions
it allows the application to check for error messages from the network even
though the host application never normally replies. The available text or
message must be read by a call to line_get().

The application may call line_input_available() to poll for input
and then do a line_get(). However, it is recommended to avoid polling
and use either line_wait() or line_select()in stead.

RETURN VALUE

A value of 1 (true) is returned if there is a message waiting to be processed,
otherwise a value of 0 (false) is returned.

 GlAPI

Gallagher & Robertson GlAPI 47

line_connected

NAME

line_connected - check whether the line is up

SYNOPSIS (C)

boolean GLAPI line_connected(void);

SYNOPSIS (PERL)

$connected = Glapi::Connected();

DESCRIPTION

This function returns true or false depending on whether the line is up or not.
The line is considered to be up after the connection is established and until
the session is closed.

RETURN VALUE

The value of 1 (true) is returned if the line is up, 0 (false) is returned
otherwise.

GlAPI

48 GlAPI Gallagher & Robertson

line_our_turn

NAME

line_our_turn - check if our turn

SYNOPSIS (C)

boolean GLAPI line_our_turn(void);

SYNOPSIS (PERL)

$ourTurn = Glapi::Our_turn();

DESCRIPTION

This function can be used to check if we have been given the turn. In two-
way alternate (TWA) sessions, the host may not have finished sending us
output, so we must wait for it to give us the turn. In most two-way
simultaneous (TWS) sessions turn is sent, however in some it is not. This is
why we only use this function with TWA to check if there is more input to
come (not our turn) or if we are allowed to send something to the other side
(our turn).

The line_our_turn status is only updated after a line_get(),
line_put() or line_write() function has been called.

RETURN VALUE

A value of 1 (true) is returned if it is our turn, 0 (false) otherwise.

SEE ALSO

line_simultaneous()

 GlAPI

Gallagher & Robertson GlAPI 49

line_simultaneous

NAME

line_simultaneous - check for two way simultaneous

SYNOPSIS (C)

boolean GLAPI line_simultaneous(void);

SYNOPSIS (PERL)

$simul = Glapi::Simultaneous();

DESCRIPTION

This function is used to check whether the session is two-way simultaneous
(TWS) or not. Most DSA simultaneous sessions send turn, but some do not.
This information is essential when flow control is concerned.

RETURN VALUE

A value of 1 (true) is returned if the session is two-way simultaneous (TWS),
0 (false) is returned if the session is two-way alternate (TWA).

SEE ALSO

line_our_turn()

GlAPI

50 GlAPI Gallagher & Robertson

line_demand_turn

NAME

line_demand_turn - demand the turn

SYNOPSIS (C)

void GLAPI line_demand_turn(void);

SYNOPSIS (PERL)

$rc = Glapi::Demand_turn();

DESCRIPTION

This function enables the application to get turn even if the host has it. The
function guarantees the integrity of subsequent sends.

RETURN VALUE

No return value.

 GlAPI

Gallagher & Robertson GlAPI 51

line_select

UNIX only

NAME

line_select - check line input

SYNOPSIS (C)

int GLAPI line_select (
 int lid);

SYNOPSIS (PERL)

$fd = Glapi::Select($lid);

DESCRIPTION

This call may be used by an application that wishes to check the state of one
of its lids. This call may be very useful if the application has started several
line modules. Upon return from this call, the application will know if there is
data available to be picked up by line_get() or receive a valid file
descriptor that can be used in poll() or select() system calls to check
input on the lid in question.

RETURN VALUE

The function will return a valid file descriptor if the lid is valid, but there is
no data available. If the lid is not in use, it will return -1. If there is data
available and a call to line_get() on the lid will return data, -2 is
returned.

ERRORS

-1 is returned if the lid is not in use.

SEE ALSO

line_get(), line_wait()

GlAPI

52 GlAPI Gallagher & Robertson

line_waitcallback

NAME

line_waitcallback - sets a wait CallBack function

SYNOPSIS

Windows only

boolean GLAPI line_waitcallback (
 BOOL (WINAPI *CallBack)(void));

DESCRIPTION

This function replaces the default wait loop function in the line_wait()
function. This allows applications to perform other tasks when Windows
messages are received.

By default, the CallBack function is:

BOOL WINAPI WlistCallBackDefault(void)
{
 MSG msg;

 if (PeekMessage (&msg, (HWND)NULL, 0, 0, PM_REMOVE)) {
 TranslateMessage (&msg);
 DispatchMessage (&msg);
 }
 return(TRUE);
}

If the CallBack function returns FALSE, the line_wait() function will
terminate and return 99.

This function is called when a message has already been received, so a
PeekMessage() or GetMessage() will always return TRUE immedi-
ately with the message. If running in a multi-thread environment, it is recom-
mended to use PeekMessage(). The WM_QUIT message has already been
tested before this CallBack function is called and has not been removed
from the message queue. For applications needing a PeekMessage() type
loop, then the line_input_available() function should be used
rather than the line_wait() or line_wait_lid() functions.

 GlAPI

Gallagher & Robertson GlAPI 53

RETURN VALUE

The return value is true if successful.

SEE ALSO

line_wait(), line_wait_lid()

GlAPI

54 GlAPI Gallagher & Robertson

line_init_keepalive

NAME

line_init_keepalive – initiate keep alive logic

SYNOPSIS (C)

void line_init_keepalive(int seconds);

SYNOPSIS (PERL)

Glapi::Init_keepalive($seconds);

DESCRIPTION

This function is used to initiate keep alive logic when the application is used
to communicate through a Ggate system (e.g. when the OSI transport stack is
running on another Host Links system). It sets the keepalive timeout interval
to be used for that session. The timeout interval is sent in the ‘logon packet’
and informs Ggate about the maximum time that should elapse without any
kind of traffic (data packets or keep alive packets) on that session. When the
keepalive timer expires, the session is expected to be terminated by Ggate.

It is the GLAPI application’s responsibility to send the keep alive packets
(using the line_send_keepalive function) within the time interval set in this
call.

This call must be issued before the line_start() call.

If the line_init_keepalive function is not called, GLAPI keep alive logic is
not activated and only the keep alive timers configured for the TCP/IP stack
will apply.

RETURN VALUE

No return value.

SEE ALSO

line_send_keepalive()

 GlAPI

Gallagher & Robertson GlAPI 55

line_send_keepalive

NAME

line_send_keepalive – send keepalive packet

SYNOPSIS (C)

Void line_send_keepalive(void);

SYNOPSIS (PERL)

Glapi::Send_keepalive();

DESCRIPTION

This function is used to send a keep alive packet. It should be used before the
time specified in the line_init_keeaplive function has expired if no other data
packet has been sent on that session within that time interval. Failure to send
the keep alive packet (or data) within the specified keepalive interval, will
result in the session beeing aborted by Ggate on the other side.

RETURN VALUE

No return value.

SEE ALSO

line_init_keepalive()

GlAPI

56 GlAPI Gallagher & Robertson

 GlAPI

Gallagher & Robertson GlAPI 57

CPI-C APIs

Architecture

Application

CMINIT CMALLC CMDEAL CMRCV CMSEND

CPI-C API

Host Links line handler: DSA/DIWS/TCP/X25/TTY

CMSERR

An application using the CPI-C API will at run-time connect to a Gline line
handler module. When the Initialize_Conversation function is used, the configu-
ration file, called cpic.cfg, is read and the configured communication line
handler module will be started. The application and the line handler are separate
executables.

GlAPI

58 GlAPI Gallagher & Robertson

The line handler can be one of the following:

Line handler Communication type Comms. API

gl_dsa DSA or DSA/ISO WorkStation
(DIWS) session over OSI transport

XTI, TLI

 DSA or DSA/ISO WorkStation
(DIWS) session over RFC1006 (G&R
OSI TP0 over TCP/IP)

Sockets

gl_tcp ‘Raw’ TCP/IP Sockets

 Telnet Sockets

 TNVIP client Sockets

 TN3270 client Sockets

 TN5250 client Sockets

gl_x25 PAD Provider specific

 ‘Raw’ X25 Provider specific

gl_tty Asynchronous line Basic OS

The line handler is chosen by giving one of the following parameters to Gline:
-LI DSA, -LI DIWS, -LI TCP, -LI X25 or -LI TTY.

 GlAPI

Gallagher & Robertson GlAPI 59

CPI-C 3270

Application

CMINIT CMALLC CMDEAL CMRCV CMSEND

CPI-C 3270

Host Links line handler: DSA/DIWS/TCP/X25

CMSERR

An application using the CPI-C 3270 API will at run-time connect to a Gline
line handler module. When the Initialize_Conversation function is
used, the configuration file, called cpic.cfg, is read and the configured
communication line handler module will be started. The application and the line
handler are separate executables.

The line handler can be one of the following:

Line handler Communication type Comms. API

gl_dsa DSA or DSA/ISO WorkStation
(DIWS) session over OSI transport via
OSF/Janus in Bull frontend.

XTI, TLI

 DSA or DSA/ISO WorkStation
(DIWS) session over RFC1006 (G&R
OSI TP0 over TCP/IP) via OSF/Janus
in Bull frontend.

Sockets

gl_tcp TN3270 client Sockets

gl_x25 ‘Raw’ X25 Provider specific

The line handler is chosen by giving one of the following parameters to Gline:
-LI DSA, -LI DIWS, -LI TCP or -LI X25.

GlAPI

60 GlAPI Gallagher & Robertson

CPI-C 5250

Application

CMINIT CMALLC CMDEAL CMRCV CMSEND

CPI-C 5250

Host Links line handler: TCP

CMSERR

An application using the CPI-C 5250 API will at run-time connect to a Gline
line handler module. When the Initialize_Conversation function is
used, the configuration file, called cpic.cfg, is read and the configured
communication line handler module will be started. The application and the line
handler are separate executables.

The line handler can be one of the following:

Line handler Communication type Comms. API

gl_tcp TN5250 client Sockets

The line handler is chosen by giving the following parameters to Gline:

 -LI TCP.

 GlAPI

Gallagher & Robertson GlAPI 61

CPI-C 7800

Application

CMINIT CMALLC CMDEAL CMRCV CMSEND

CPI-C 7800

Host Links line handler: DSA/DIWS/TCP/X25/TTY

CMSERR

An application using the CPI-C 7800 API will at run-time connect to a Gline
line handler module. When the Initialize_Conversation function is used, the
configuration file, called cpic.cfg, is read and the configured communication
line handler module will be started. The application and the line handler are
separate executables. The line handler can be one of the following:

Line handler Communication type Comms. API

gl_dsa DSA or DSA/ISO WorkStation
(DIWS) session over OSI transport

XTI, TLI

 DSA or DSA/ISO WorkStation
(DIWS) session over RFC1006 (G&R
OSI TP0 over TCP/IP)

Sockets

gl_tcp ‘Raw’ TCP/IP Sockets

 Telnet Sockets

 TNVIP client Sockets

gl_x25 PAD Provider specific

 ‘Raw’ X25 Provider specific

gl_tty Asynchronous line Basic OS

The line handler is chosen by giving one of the following parameters to Gline:
-LI DSA, -LI DIWS, -LI TCP, -LI X25 or -LI TTY.

GlAPI

62 GlAPI Gallagher & Robertson

CPI-C DKU

Application

CMINIT CMALLC CMDEAL CMRCV CMSEND

CPI-C DKU

Host Links line handler: DSA/DIWS/TCP

CMSERR

An application using the CPI-C DKU API will at run-time connect to a Gline
line handler module. When the Initialize_Conversation function is used, the
configuration file, called cpic.cfg, is read and the configured communication
line handler module will be started. The application and the line handler are
separate executables.

 The line handler can be one of the following:

Line handler Communication type Comms. API

gl_dsa DSA or DSA/ISO WorkStation
(DIWS) session over OSI transport

XTI, TLI

 DSA or DSA/ISO WorkStation
(DIWS) session over RFC1006 (G&R
OSI TP0 over TCP/IP)

Sockets

gl_tcp TNVIP client Sockets

The line handler is chosen by one of the following parameters: -LI DSA, -LI
DIWS or -LI TCP.

 GlAPI

Gallagher & Robertson GlAPI 63

CPI-C compatibility
G&R/CPI-C API is compatible with the X/Open CPI-C version 2. The
cpic.h file supplied with the G&R/GlAPI SDK also contains version 1
compatible functions. The version 1 function uses uppercase function names and
are supplied in the UNIX G&R/CPI-C static link libraries for compatibility with
previous versions of CPI-C object files, however, only the following functions
are supplied in the libraries; CMALLC, CMDEAL, CMINIT, CMRCV,
CMSEND and CMSERR. These functions map directly to their corresponding
version 2 functions with the exception that they return the return_code
value. For future compatibility, we do not recommend using there uppercase
function, and any version 1 CPI-C source files should be converted to the version
2 lowercase functions.

There are some functional differences with the G&R CPI-C API previous to 5.0.
These differences are in the initial states of the CPI-C concerning the Deallo-
cation type and the Send type:

Deallocate type pre-5.0: CM_DEALLOCATE_ABEND

from 5.0: CM_DEALLOCATE_SYNC_LEVEL
See Set_Deallocate_Type on page 92 for
details

Send type pre-5.0: CM_SEND_AND_PREP_TO_RECEIVE

from 5.0: CM_BUFFER_DATA
See Set_Send_Type on page 102 for details

Also, the Receive function in version 1 only returned when it received the turn
from the host and therefore always returned the CM_SEND_RECEIVED status.
Now this function returns when any message is received from the host and only
returns the CM_SEND_RECEIVED status when it has received the turn from the
host. This allows the CPI-C application to send multiple messages from the host
in smaller buffers.

The cpic.cfg option -SS is supplied to change the CPI-C states and Receive
function to work as in the pre-5.0 versions.

Gallagher & Robertson has included some private extensions to the CPIC inter-
face. This is clearly indicated where the extension is documented.

GlAPI

64 GlAPI Gallagher & Robertson

CPI-C States & State-transitions
During the execution phase, the local application changes its state each time a
CPI-C call is issued. Each CPI-C call causes the local application to change from
a certain state A to another state B. If the local application is not in the proper
state when the CPI-C call is made, a return code indicates the error that occurred.
If an error is detected, the state transition does not occur.

A CPI-C API operates in 4 states: RESET, INIT, SEND and RECEIVE. It
always starts off in RESET state. It will be set to INIT state after a successful
return from the Initialize_Conversation call.

In INIT state, a successful connection to the remote host application, with a call
to Allocate, will by default put the local application in SEND state. However
by setting the parameter -SND OFF, the local application will be in RECEIVE
state after a successful call to Allocate.

In RECEIVE state, the local application may issue calls to Receive or
Deallocate. Receive will put it in SEND state and Deallocate will put
it in RESET state.

In SEND state, the local application may issue calls to Send_Data or
Deallocate. Send_Data will put it in RECEIVE state and Deallocate
will put it in RESET state.

A call to Send_Error will put the local application in RECEIVE state, both
when issued in SEND and RECEIVE state.

 GlAPI

Gallagher & Robertson GlAPI 65

CPI-C API variables and definitions

SIDEINFO structure
typedef struct side_info_entry {
unsigned char sym_dest_name[8];
unsigned char partner_LU_name[17];
unsigned char reserved[3];
XC_TP_NAME_TYPE TP_name_type;
unsigned char TP_name[64];
unsigned char mode_name[8];
CM_CONVERSATION_SECURITY_TYPE conversation_security_type;
unsigned char security_user_ID[8];
unsigned char security_password[8];
} SIDE_INFO;

Sym_dest_name Symbolic destination name.
Partner_LU_name Fully Q'd PLU name.
Reserved Reserved.
TP_name_type Set to:

XC_APPLICATION_TP
XC_SNA_SERVICE_TP

TP_name TP name
Mode_name Mode name
Conversation_security
_type

Set to:
CM_SECURITY_NONE
CM_SECURITY_SAME
CM_SECURITY_PROGRAM

Security_user_ID User_ID
Security_password Password

GlAPI

66 GlAPI Gallagher & Robertson

CPIC_FIELD_INFO structure

G&R private
extension

typedef struct CPIC_FIELD_INFO {
 int fldindex;
 int startpos;
 int endpos;
} CPIC_FIELD_INFO;

fldindex If zero or higher: The field index of

the current field. A value of -1
indicates that the rest of the members
of this structure are void

startpos Offset from the beginning of the screen
buffer to where the field starts.

endpos Offset from the beginning of the screen
buffer to where the field ends.

definitions
#include <cpic.h>

Windows:
#define windows
#define windows16
#define windows32
#include <wincpic.h>

Unix:
#define unix

Perl:
use Cpic; # For the non-emulating API
use Cpic7800; # For CPI-C 7800 API
use Cpic3270; # For CPI-C IBM 3270 API
use Cpic5250; # For CPI-C IBM 5250 API
use CpicDku; # For CPI-C DKU API

 GlAPI

Gallagher & Robertson GlAPI 67

CPI-C API functions list
Function Description

Accept_Conversation Accept a conversation

Allocate Connect to remote application

Deallocate close connection and stop the line
handler.

Initialize_Conversation read parameters and start line
handler

Prepare_To_Receive prepare to receive

Receive return next form to the application

Request_To_Send request to send

Send_Data read "keyboard input" and send

Send_Error send BREAK to the host application

Set_Conversation_Type set conversation type

Set_Deallocate_Type set how the conversation will be
deallocated

Set_Mode_Name set mode name

Set_Partner_LU_Name set partner LU name

Set_Prepare_To_Receive_Typ
e

set prepare to receive type

Set_Receive_Type set the conversations receive type

Set_Send_Type set the conversations send type

Set_Sync_Level set the sync level

Set_TP_Name set the remote program name

Set_Conversation_Security_
Type

set the conversation security type
(same as xcscst)

Set_Conversation_Security_
User_ID

set the conversations security id

GlAPI

68 GlAPI Gallagher & Robertson

Function Description

Set_Conversation_Security_
Password

set the conversations security
password id

Set_CPIC_Side_Information set side information

Set_Conversation_Security_
Type

set the conversation security type
(same as cmscst)

WinCPICIsBlocking test if blocking

WinCPICSetBlockingHook set blocking hook

WinCPICUnhookBlockingHook removes blocking hook

WinCPICStartup initialization call

WinCPICCleanup termination call

char * api_msg deliver a message based on the CPI-
C retcode

CPI-C Emulation API functions list
Function Description

Allocate connect to remote application

Deallocate close connection and stop the line
handler.

Initialize_Conversation read parameters and start line handler

Receive return next form to the application

Send_Data read "keyboard input" and send

Send_Error send BREAK to the host application

char * api_msg deliver a message based on the CPI-C
retcode

Get_Field_Info Retrieve information regarding variable
fields

 GlAPI

Gallagher & Robertson GlAPI 69

CPI-C functions

Accept_Conversation (cmaccp)

not emulation
CPI-C

NAME

Accept_Conversation (cmaccp) - accept a conversation

SYNOPSIS (C)

#include "cpic.h"
/* Accept_Conversation */
CM_ENTRY cmaccp(
 unsigned char CM_PTR conversation_id,
 CM_INT32 CM_PTR return_code);

SYNOPSIS (PERL)

use Cpic;
($cid, $rc) = Cpic::Accept_Conversation();

DESCRIPTION

The Accept_Conversation (cmaccp) call accepts an incoming
conversation. Like Initialize_Conversation, this call initializes
values for various conversation characteristics.

By default the line handle parameters will be picked up from the Default
section in the cpic.cfg file, however, a specific node name may be
supplied in the default sym_dest_name by using the
Set_CPIC_Side_Infarmation function. When this function is called,
it will only return when an incoming connection has been received. The -LW
nn option can be used to specify a timeout, in which case
CM_ALLOCATE_FAILURE_NO_RETRY is returned.

The conversation_id output parameter specifies the conversation
identifier assigned to the conversation. CPI-C supplies and maintains the

GlAPI

70 GlAPI Gallagher & Robertson

conversation_id. When the return_code is set equal to CM_OK, the
value returned in this parameter is used by the program on all subsequent
calls issued for this conversation.

RETURN VALUE

return_code CM_OK

The application/API has received a successful
connection from the host application. It is now in
SEND state and a call to Send_Data should be
made to read the first form.

CM_PROGRAM_PARAMETER_CHECK.

An invalid value was specified in the CPI-C config
file, or Side Information. API is in RESET state.
CM_ALLOCATE_FAILURE_NO_RETRY

The incoming connection was aborted, See the -LW
parameter.

ERRORS

If an error has occurred, return_code will be different from CM_OK and
the value will describe the error.

 GlAPI

Gallagher & Robertson GlAPI 71

Allocate (cmallc)

NAME

Allocate (cmallc) - connect to remote application

SYNOPSIS (C)

#include "cpic.h"

/* Allocate */
CM_ENTRY cmallc (
 unsigned char CM_PTR conversation_id,
 CM_INT32 CM_PTR return_code);

SYNOPSIS (PERL)

use CpicXXXX;
$rc = CpicXXXX::Allocate($cid);

DESCRIPTION

When Allocate (cmallc) is called, a connection to the configured host
application will be established, and the local application will be put in SEND
state (default case). In this state if the host takes the initiative and sends a
(log-on) form it will be purged and never delivered to the local application.
However by supplying the parameter -SND OFF, the local application will
be in RECEIVE state after a successful call to Allocate and the first form
can be received in a following call to Receive.

In order to handle the situations where the host application does not send a
log-on screen or welcome-banner and/or a Two-Way-Simultaneous (Full
duplex) connection has been negotiated, we have introduced a parameter,
-CW OFF, that will force an immediate return to the application when the
connection is established.

An example of a typical connection to a host would be:

#ifdef windows
WORD wVer = 2;
WCPICDATA CPICData;

 if (WinCPICStartup(wVer, &CPICData) != 0)
 return (-1);
#endif

GlAPI

72 GlAPI Gallagher & Robertson

 Initialize_Conversation(conv_id, "tssdps8", &retcode);
 if (retcode) {
 send_disconnect();
 return (-1);
 }

 Allocate(conv_id, &retcode);
 if (retcode) {
 send_disconnect();
 return (-1);
 }
 /* set send type to send with turn */
 sndtyp = CM_SEND_AND_PREP_TO_RECEIVE;
 Set_Send_Type(conv_id, &sndtyp, &retcode);

RETURN VALUE

return_code CM_OK

The application/API has made a successful
connection to the host application. It is now in
RECEIVE state and a call to Receive should be
made to read the first form.

CM_PROGRAM_STATE_CHECK

The application/API was in SEND or RECEIVE
state.

CM_PROGRAM_PARAMETER_CHECK

The conversation_id is undefined or the application/
API is in RESET state.

CM_ALLOCATE_FAILURE_NO_RETRY

The API was not able to connect to the host
application. Check connection parameters in the
configuration file, and verify that the host application
is running. It might be a good idea to try to make a
similar connection from G3270, G5250, V78sim,
or Qsim.

ERRORS

If an error has occurred, return_code will be different from CM_OK and
the value will describe the error.

 GlAPI

Gallagher & Robertson GlAPI 73

Deallocate (cmdeal)

NAME

Deallocate (cmdeal) - close connection and stop the line handler.

SYNOPSIS (C)

#include "cpic.h"

CM_ENTRY cmdeal (
 unsigned char CM_PTR conversation_id,
 CM_INT32 CM_PTR return_code);

SYNOPSIS (PERL)

use CpicXXXX;
$rc = CpicXXXX::Deallocate($cid);

DESCRIPTION

When Deallocate (cmdeal) is called, the connection is released.
Whether the connection to the host application is closed and the Host
Links line handler is terminated depends on the Deallocate type which can
be changed with Set_Deallocate_Type. By default the connection is
returned to a pool and may used again when the same symbolic name is
requested, however normal usage to disconnect from the host would be;

 /* set deallocate type to be CM_DEALLOCATE_ABEND */
 /* to force disconnect */
 dealtyp = CM_DEALLOCATE;
 Set_Deallocate_Type(conv_id, &dealtyp, &retcode);
 Deallocate(conv_id, &retcode);
#ifdef windows
 WinCPICCleanup();
#endif

To reconnect, the application must make new calls to
Initialize_Conversation and Allocate.

GlAPI

74 GlAPI Gallagher & Robertson

RETURN VALUE

return_code CM_OK

The application/API has received a new form from
the host application, and it is now in SEND state. The
received form is returned in buffer, the received
length is always a full screen, 1920 characters.

CM_PROGRAM_PARAMETER_CHECK

The conversation_id is undefined or the application/
API is in RESET state.

ERRORS

If an error has occurred, return_code will be different from CM_OK and
the value will describe the error.

 GlAPI

Gallagher & Robertson GlAPI 75

Get_Field_Info (cmfld)

Emulation
CPI-C only

G&R private
extension

NAME

Get_Field_Info (cmfld) - retrieve variable field information

SYNOPSIS (C)

#include "cpic.h"

/* Get_Field_Info */
CM_ENTRY cmfld(
 unsigned char CM_PTR conversation_id,
 CPIC_FIELD_INFO CM_PTR field_info,
 CM_INT32 CM_PTR field_struct_size,
 CM_INT32 CM_PTR return_code);

SYNOPSIS (PERL)

use CpicXXXX;
($fieldnum,$start,$endpos,$rc) =
 CpicXXXX::Get_Field_Info($cid,$fieldnum);

DESCRIPTION

Get_Field_Info (cmfld) is used by a program to pick up information
about the variable fields (if any) present on the current screen (the screen last
retrieved by the cmrcv() function call). When calling this function, supply
as a parameter the number of the field (starting with 1) you wish to retrieve
information about. To retrieve information on about all fields, start with 1
and increase by 1 until the returned field number is -1.

This function is a Gallagher & Robertson private extension to the CPIC inter-
face.

GlAPI

76 GlAPI Gallagher & Robertson

RETURN VALUE

return_code CM_OK

CM_PROGRAM_PARAMETER_CHECK.

The conversation_id is undefined or the
application/API is in RESET state.

ERRORS

If an error has occurred, return_code will be different from CM_OK and
the value will describe the error. The returned field number will contain a
value of -1 when you have requested information about a non-existing
variable field.

 GlAPI

Gallagher & Robertson GlAPI 77

Initialize_Conversation (cminit)

NAME

Initialize_Conversation (cminit) - read parameters and start
line handler

SYNOPSIS (C)

#include "cpic.h"

CM_ENTRY cminit (
 unsigned char CM_PTR conversation_id,
 unsigned char CM_PTR sym_dest_name,
 CM_INT32 CM_PTR return_code);

SYNOPSIS (PERL)

use CpicXXXX;
($cid, $rc) = CpicXXXX::Initialize_Conversation($name);

DESCRIPTION

When Initialize_Conversation (cminit) is called, the
configuration file, cpic.cfg, is read and the selected Gline line handler is
started. The host label given to Initialize_Conversation in
sym_dest_name is used by Initialize_Conversation to find
connection parameters for the host application. After reading the
configuration file, but before starting the line handler,
Initialize_Conversation will check the following environment
variables and pass their content as Gline parameter values:

Environment variables Line handler parameters

INITIAL_COR -DA

REMNODE -DN

REMMB_EXT -DX

LOCNODE -LN

LOCMB -MN

LOCMB_EXT -MX

GlAPI

78 GlAPI Gallagher & Robertson

Environment variables Line handler parameters

USERINFO -UR

SECURITY -PW

EMU_MODEL -TM

If an environmental variable has been set, it will override any value specified
for that parameter in the configuration file. For more information on the line
handlers and their parameters, see the Gline manual.

INITIAL STATES

deallocate_type CM_DEALLOCATE_SYNC_LEVEL

send_type CM_BUFFER_DATA

receive type CM_RECEIVE_AND_WAIT

RETURN VALUE

conversation_id A unique conversation_id will be returned by
Initialize_Conversation when it
completes its operation without error.

return_code CM_OK

Configuration file has been analyzed and the
configured line handler has been started. The
API is now in INIT state.

CM_PROGRAM_STATE_CHECK

The application/API was not in RESET state.

CM_PROGRAM_PARAMETER_CHECK

An error was found in the configuration file, or
it was not possible to start the configured line
handler.

ERRORS

If an error has occurred, return_code will be different from CM_OK and
the value will describe the error.

 GlAPI

Gallagher & Robertson GlAPI 79

Prepare_To_Receive (cmptr)

not emulation
CPI-C

NAME

Prepare_To_Receive (cmptr) - prepare to receive

SYNOPSIS (C)

#include "cpic.h"

/* Prepare_To_Receive */
CM_ENTRY cmptr(
 unsigned char CM_PTR conversation_id,
 CM_INT32 CM_PTR return_code);

SYNOPSIS (PERL)

use Cpic;
$rc = Cpic::Prepare_To_Receive($cid);

DESCRIPTION

Prepare_To_Receive (cmptr) — change a conversation from Send
to Receive state in preparation to receive data.

This function currently has no effect and is supplied for program
compatibility reasons.

RETURN VALUE

return_code CM_OK
CM_PROGRAM_PARAMETER_CHECK.

ERRORS

If an error has occurred, return_code will be different from CM_OK and
the value will describe the error.

GlAPI

80 GlAPI Gallagher & Robertson

Receive (cmrcv)

NAME

Receive (cmrcv) - return next form to the application

SYNOPSIS (C)

#include "cpic.h"

CM_ENTRY cmrcv (
 unsigned char CM_PTR conversation_id,
 unsigned char CM_PTR buffer,
 CM_INT32 CM_PTR request_length,
 CM_INT32 CM_PTR data_received,
 CM_INT32 CM_PTR received_length,
 CM_INT32 CM_PTR status_received,
 CM_INT32 CM_PTR request_to_send_received,
 CM_INT32 CM_PTR return_code);

SYNOPSIS (PERL)

use CpicXXXX;
($buffer,$dr,$status,$rts,$rc) = CpicXXXX::Receive($cid);

DESCRIPTION

The Receive (cmrcv) function is slightly different in the CPI-C line
handler API and the CPI-C emulation API. The application must be in
RECEIVE state before it is allowed to receive data.

In the line handle CPI-C API, Receive will wait until the host application
has sent some data. The status_received will indicate whether the turn
was received from the host or not. If the -SS ON option is set, then it will
wait for the turn and concatenate host data into the same receive buffer. If the
-SS ON option is set, then CPI-C will Deallocate on reception of the turn.
This option should not normally be used.

 GlAPI

Gallagher & Robertson GlAPI 81

The emulation APIs will wait until the host has finished sending the next
form. As default a cleared screen is not considered as a form in the CPI-C
3270, 5250, 7800 and DKU APIs. However, when the parameter -BS ON is
specified, the Receive function in CPI-C 3270, 5250, 7800 and DKU API
will return also when the screen is "empty" (cleared). When the form is
received and the "terminal" is allowed to send again, Receive will return a
buffer containing the current screen/form. Since the emulation APIs (CPI-C
3270, 5250, 7800 and DKU) always deliver a copy of the screen (i.e 24*80
characters), the size of the returned buffer will always be 1920 characters. In
the CPI-C API, the size of the buffer will vary as this interface delivers the
data as it is received.

In the CPI-C APIs we have added a parameter, -RW NN, that allows you to
specify a maximum wait time in a Receive call. The default is to wait
indefinitely for the host application to respond, but when a number is
specified with the -RW parameter, Receive will close the connection and
return to the application in RESET state when the configured number of
seconds have elapsed. In this case the return code, CM_RETCODE, will be
CM_DEALLOCATED_ABEND_TIMER.

Typically your application would continue to call the receive function until is
received the turn indicated by the CM_SEND_RECEIVED status:

 retcode = CM_OK;
 status = CM_NO_STATUS_RECEIVED;
 while (retcode == CM_OK && status == CM_NO_STATUS_RECEIVED) {
 Receive(conv_id, inpbuf, &inplen, &datarec, &reclen,
 &status, &rts, &retcode);
 if (retcode == CM_OK)
 treat_buffer(inpbuf, reclen);
 }

See also the -SS, -DG options for the cpic.cfg file.

GlAPI

82 GlAPI Gallagher & Robertson

RETURN VALUE

Parameter Description

buffer Address of buffer where the received form will
be returned.

data_received Always CM_COMPLETE_DATA_RECEIVED,
which means that the complete form has been
received.

received_length Always same size as the screen buffer in the
CPI-C 3270, 5250, 7800 and DKU APIs, but
will vary in the basic CPI-C API, and reflect the
actual number of bytes received from the host.
The 3270, 5250 and DKU APIs only support
24*80 screens at the moment, so for these APIs
the value will always be 1920 (characters).

status_received Always CM_SEND_RECEIVED, which means
that the host application is ready to receive data
from us.

request_to_send
_received

Always CM_REQ_TO_SEND_NOT_RECEIVED
because we do not expect such a notification.

return_code CM_OK

The application/API has received a new form
from the host application, and it is now in
SEND state. The received 3270, 5250, 7800 or
DKU form is returned in buffer, the received
length is always a full screen (3270/5250/DKU:
1920 characters).

CM_PROGRAM_STATE_CHECK

The application/API was in INIT state.

CM_PROGRAM_PARAMETER_CHECK

The conversation_id is undefined or the
application/API is in RESET state.

CM_DEALLOCATED_NORMAL

The status_received is
CM_SEND_RECEIVED, the turn was received,

 GlAPI

Gallagher & Robertson GlAPI 83

Parameter Description
and the -DG ON option is used.

CM_DEALLOCATED_ABEND

The connection to the host application has been
closed. It can be a result of a previous command
(sent by Send_Data) that caused the host
application to terminate, or it might be an
abnormal termination.

CM_DEALLOCATED_ABEND_TIMER

The connection to the host application has been
closed due to an internal time-out. The host
application did not respond within the wait time
configured with the -RW nn parameter, and
the API has now closed the connection,
terminated the line handler and returned to
RESET state.

CM_UNSUCCESSFUL
This code will be returned is the Receive type
was CM_RECEIVE_IMMEDIATE and there
was not data available

ERRORS

If an error has occurred, return_code will be different from CM_OK and
the value will describe the error.

GlAPI

84 GlAPI Gallagher & Robertson

Request_To_Send (cmrts)

not emulation
CPI-C

NAME

Request_To_Send (cmrts) - request to send

SYNOPSIS (C)

#include "cpic.h"

/* Request_To_Send */
CM_ENTRY cmrts(
 unsigned char CM_PTR conversation_id,
 CM_INT32 CM_PTR return_code);

SYNOPSIS (PERL)

use Cpic;
$rc = Cpic::Request_To_Send($cid);

DESCRIPTION

The local program uses the Request_To_Send (cmrts) call to notify
the remote program that the local program would like to enter Send state for a
given conversation.

This function currently has no effect and is supplied for program
compatibility reasons.

RETURN VALUE

return_code CM_OK

CM_PROGRAM_PARAMETER_CHECK.

The conversation_id is undefined or the
application/API is in RESET state.

 GlAPI

Gallagher & Robertson GlAPI 85

ERRORS

If an error has occurred, return_code will be different from CM_OK and
the value will describe the error.

GlAPI

86 GlAPI Gallagher & Robertson

Send_Data (cmsend)

NAME

Send_Data (cmsend) - read "keyboard input" and send

SYNOPSIS (C)

#include "cpic.h"

CM_ENTRY cmsend (
 unsigned char CM_PTR conversation_id,
 unsigned char CM_PTR buffer,
 CM_INT32 CM_PTR send_length,
 CM_INT32 CM_PTR request_to_send_received,
 CM_INT32 CM_PTR return_code);

SYNOPSIS (PERL)

use CpicXXXX;
$rc = CpicXXXX::Send($cid,$buffer,$length,$rsr);

DESCRIPTION

When the application is in SEND state, it is allowed to send data to the host
application. With the CPI-C API, the buffer is sent to the application as
delivered in the Receive call. This mean that the application is responsible
for sending data in a format accepted by the host application. With the CPI-C
3270, 5250, 7800 and DKU API the buffer is filled with simulated keyboard
input, which will be used to fill in the variable fields of the current form and
sent to the host application. A list of supported function keys and their codes
are presented in the CPI-C 3270 API: keyboard input, 5250 API: keyboard
input, CPI-C 7800 API: keyboard input and CPI-C DKU API: keyboard input
chapters.

To send a message with the turn to the host so as to be in RECEIVE state
after the Send_Data would be:

 sndtyp = CM_SEND_AND_PREP_TO_RECEIVE;
 Set_Send_Type(conv_id, &sndtyp, &retcode);
 Send_Data(conv_id, outbuf, &sndlen, &rts, &retcode);

 GlAPI

Gallagher & Robertson GlAPI 87

To send a message without the turn to the host so as to remain in SEND state
after the Send_Data would be:

 sndtyp = CM_BUFFER_DATA;
 Set_Send_Type(conv_id, &sndtyp, &retcode);
 Send_Data(conv_id, outbuf, &sndlen, &rts, &retcode);

In the above example, the data would not be sent to the host until the line
handler buffer was full (see the Glink -LL parameter) or the
CM_SEND_AND_PREP_TO_RECEIVE send state was set.

RETURN VALUE

return_code CM_OK

The application/API has sent its input to the
host application, and it is now in RECEIVE
state.

CM_PROGRAM_STATE_CHECK

The application/API was in INIT state.

CM_PROGRAM_PARAMETER_CHECK

The conversation_id is undefined or the
application/API is in RESET state.

CM_DEALLOCATED_ABEND

The connection to the host application has
unexpectedly been closed or aborted, most
likely be the host application. Check the log or
trace to find the reason.

ERRORS

If an error has occurred, return_code will be different from CM_OK and
the value will describe the error.

GlAPI

88 GlAPI Gallagher & Robertson

Send_Error (cmserr)

NAME

Send_Error (cmserr) - send BREAK to GCOS host

SYNOPSIS (C)

#include "cpic.h"

CM_ENTRY cmserr (
 unsigned char CM_PTR conversation_id,
 CM_INT32 CM_PTR request_to_send_received,
 CM_INT32 CM_PTR return_code);

SYNOPSIS (PERL)

use CpicXXXX;
$rc = CpicXXXX::Send_Error($cid,$rsr);

DESCRIPTION

This function is used by the application to send a BREAK to the host. The
BREAK is sent without regard to the current state, and the local application
will be in RECEIVE state when the function returns. The behavior of the host
is different from one host subsystem to another.

 GlAPI

Gallagher & Robertson GlAPI 89

RETURN VALUE

return_code CM_OK

The application/API has sent a BREAK to the host
application, and it is now in RECEIVE state.

CM_PROGRAM_STATE_CHECK

The application/API was in INIT state.

CM_PROGRAM_PARAMETER_CHECK

The conversation_id is undefined or the
application/API is in RESET state.

CM_DEALLOCATED_ABEND

The connection to the host application has been
closed or aborted, most likely by the host application.
Check the log or trace to find the reason. The
application/API will now be in RESET state.

ERRORS

If an error has occurred, return_code will be different from CM_OK and
the value will describe the error.

GlAPI

90 GlAPI Gallagher & Robertson

Set_Conversation_Type (cmsct)

not emulation
CPI-C

NAME

Set_Conversation_Type (cmsct) - set conversation type

SYNOPSIS (C)

#include "cpic.h"

/* Set_Conversation_Type */
CM_ENTRY cmsct(
 unsigned char CM_PTR conversation_id,
 CM_INT32 CM_PTR conv_type,
 CM_INT32 CM_PTR return_code);

SYNOPSIS (PERL)

use Cpic;
$rc = Cpic::Set_Conversation_Type($cid, $ctype);

DESCRIPTION

Set_Conversation_Type (cmsct) is used by a program to set the
conversation_type characteristic for a given conversation. It overrides
the value that was assigned when the Initialize_Conversation call
was issued.

This function currently has no effect and is supplied for program
compatibility reasons.

RETURN VALUE

return_code CM_OK

CM_PROGRAM_PARAMETER_CHECK.

The conversation_id is undefined or the
application/API is in RESET state.

 GlAPI

Gallagher & Robertson GlAPI 91

ERRORS

If an error has occurred, return_code will be different from CM_OK and
the value will describe the error.

GlAPI

92 GlAPI Gallagher & Robertson

Set_Deallocate_Type (cmsdt)

not emulation
CPI-C

NAME

Set_Deallocate_Type (cmsdt) - set how the conversation will be
deallocated

SYNOPSIS (C)

#include "cpic.h"

/* Set_Deallocate_Type */
CM_ENTRY cmsdt(
 unsigned char CM_PTR conversation_id,
 CM_INT32 CM_PTR deallocate_type,
 CM_INT32 CM_PTR return_code);

SYNOPSIS (PERL)

use Cpic;
$rc = Cpic::Set_Deallocate_Type($cid, $dtype);

DESCRIPTION

Set_Deallocate_Type (cmsdt) is used by a program to set the
deallocate_type characteristic for a given conversation.
Set_Deallocate_Type overrides the value that was assigned when the
Initialize_Conversation or Accept_Conversation call was
issued. See also the -SS, -DD, options for the cpic.cfg file.

The possible values for the deallocate_type are:

CM_DEALLOCATE_SYNC_LEVEL Releases the conversation to the
pool and the connection to the
host is not disconnected.

 GlAPI

Gallagher & Robertson GlAPI 93

CM_DEALLOCATE_ABEND Releases the conversation and
the connection to the host is
disconnected and the line
handler terminated

RETURN VALUE

return_code CM_OK

CM_PROGRAM_PARAMETER_CHECK.

The conversation_id is undefined or the
application/API is in RESET state.

ERRORS

If an error has occurred, return_code will be different from CM_OK and
the value will describe the error.

GlAPI

94 GlAPI Gallagher & Robertson

Set_Mode_Name (cmsmn)

not emulation
CPI-C

NAME

Set_Mode_Name (cmsmn) - set mode name

SYNOPSIS (C)

#include "cpic.h"

/* Set_Mode_Name */
CM_ENTRY cmsmn(
 unsigned char CM_PTR conversation_id,
 unsigned char CM_PTR mode_name,
 CM_INT32 CM_PTR mode_name_len,
 CM_INT32 CM_PTR return_code);

SYNOPSIS (PERL)

N/A

DESCRIPTION

Set_Mode_Name (cmsmn) is used by a program to set the mode_name
and mode_name_length characteristics for a conversation.
Set_Mode_Name overrides the current values that were originally acquired
from the side information using the sym_dest_name.

This function currently has no effect and is supplied for program
compatibility reasons.

RETURN VALUE

return_code CM_OK

CM_PROGRAM_PARAMETER_CHECK.

The conversation_id is undefined or the
application/API is in RESET state.

 GlAPI

Gallagher & Robertson GlAPI 95

ERRORS

If an error has occurred, return_code will be different from CM_OK and
the value will describe the error.

GlAPI

96 GlAPI Gallagher & Robertson

Set_Partner_LU_Name (cmspln)

not emulation
CPI-C

NAME

Set_Partner_LU_Name (cmspln) - set partner LU name

SYNOPSIS (C)

#include "cpic.h"

/* Set_Partner_LU_Name */
CM_ENTRY cmspln(
 unsigned char CM_PTR conversation_id,
 unsigned char CM_PTR partner_LU_name,
 CM_INT32 CM_PTR partner_LU_name_len,
 CM_INT32 CM_PTR return_code);

SYNOPSIS (PERL)

N/A

DESCRIPTION

Set_Partner_LU_Name (cmspln) is used by a program to set the
partner_LU_name and partner_LU_name_length characteristics
for a conversation. Set_Partner_LU_Name overrides the current values
that were originally acquired from the side information using the
sym_dest_name.

This function currently has no effect and is supplied for program
compatibility reasons.

 GlAPI

Gallagher & Robertson GlAPI 97

RETURN VALUE

return_code CM_OK

CM_PROGRAM_PARAMETER_CHECK.

The conversation_id is undefined or the
application/API is in RESET state.

ERRORS

If an error has occurred, return_code will be different from CM_OK and
the value will describe the error.

GlAPI

98 GlAPI Gallagher & Robertson

Set_Prepare_To_Receive_Type (cmsptr)

not emulation
CPI-C

NAME

Set_Prepare_To_Receive_Type (cmsptr) - set prepare to receive
type

SYNOPSIS (C)

#include "cpic.h"

/* Set_Prepare_To_Receive_Type */
CM_ENTRY cmsptr(
 unsigned char CM_PTR conversation_id,
 CM_INT32 CM_PTR prep_to_rec_type,
 CM_INT32 CM_PTR return_code);

SYNOPSIS (PERL)

use Cpic;
$rc = Cpic::Set_Prepare_To_Receive_Type($cid,$ptype);

DESCRIPTION

Set_Prepare_To_Receive_Type (cmsptr) is used by a program
to set the prepare_to_receive_type characteristic for a conversation.
This call overrides the value that was assigned when the
Initialize_Conversation or Accept_Conversation call was
issued.

This function currently has no effect and is supplied for program
compatibility reasons.

 GlAPI

Gallagher & Robertson GlAPI 99

RETURN VALUE

return_code CM_OK

CM_PROGRAM_PARAMETER_CHECK.

The conversation_id is undefined or the
application/API is in RESET state.

ERRORS

If an error has occurred, return_code will be different from CM_OK and
the value will describe the error.

GlAPI

100 GlAPI Gallagher & Robertson

Set_Receive_Type (cmsrt)

not emulation
CPI-C

NAME

Set_Receive_Type (cmsrt) - set the conversations receive type

SYNOPSIS (C)

#include "cpic.h"

/* Set_Receive_Type */
CM_ENTRY cmsrt(
 unsigned char CM_PTR conversation_id,
 CM_INT32 CM_PTR receive_type,
 CM_INT32 CM_PTR return_code);

SYNOPSIS (PERL)

use Cpic;
$rc = Cpic::Set_Receive_Type($cid,$rtype);

DESCRIPTION

Set_Receive_Type (cmsrt) is used by a program to set the
receive_type characteristic for a conversation. Set_Receive_Type
overrides the value that was assigned when the
Initialize_Conversation or Accept_Conversation call was
issued

CM_RECEIVE_AND_WAIT Receive will wait for data from
the host, see -RW option.

CM_RECEIVE_IMMEDIATE Receive will return immediately
with the data or an error if there
was none.

 GlAPI

Gallagher & Robertson GlAPI 101

RETURN VALUE

return_code CM_OK

CM_PROGRAM_PARAMETER_CHECK.

The conversation_id is undefined or the
application/API is in RESET state.

ERRORS

If an error has occurred, return_code will be different from CM_OK and
the value will describe the error.

GlAPI

102 GlAPI Gallagher & Robertson

Set_Send_Type (cmsst)

not emulation
CPI-C

NAME

Set_Send_Type (cmsst) - set the conversations send type

SYNOPSIS (C)

#include "cpic.h"

/* Set_Send_Type */
CM_ENTRY cmsst(
 unsigned char CM_PTR conversation_id,
 CM_INT32 CM_PTR send_type,
 CM_INT32 CM_PTR return_code);

SYNOPSIS (PERL)

use Cpic;
$rc = Cpic::Set_Send_Type($cid, $stype);

DESCRIPTION

Set_Send_Type (cmsst) is used by a program to set the send_type
characteristic for a conversation. Set_Send_Type overrides the value that
was assigned when the Initialize_Conversation or
Accept_Conversation call was issued.

The default sent_type is CM_BUFFER_DATA which will only send the data
to the host when the line buffer is full. If the Send_Data is to send the data
directly to the host, then CM_SEND_AND_PREP_TO_RECEIVE should be
used. See also the -SS, -DD, -ET options for the cpic.cfg file.

 GlAPI

Gallagher & Robertson GlAPI 103

The possible values for the send_type are:

CM_BUFFER_DATA

CM_SEND_AND_FLUSH
CM_AND_CONFIRM

By default send the data
with no enclosure. Can be
changes with the -ET
option.

CM_SEND_AND_PREP_TO_RECEIVE Sends the data with the turn.
After this call the CPI-C is
in RECEIVE state.

CM_SEND_AND_DEALLOCATE Sends the data with the turn
and Deallocate the session.
After this call the CPI-C is
in RESET state. The -DD
option.

RETURN VALUE

return_code CM_OK

CM_PROGRAM_PARAMETER_CHECK.

The conversation_id is undefined or the
application/API is in RESET state.

ERRORS

If an error has occurred, return_code will be different from CM_OK and
the value will describe the error.

GlAPI

104 GlAPI Gallagher & Robertson

Set_Sync_Level (cmssl)

not emulation
CPI-C

NAME

Set_Sync_Level (cmssl) - set the sync level

SYNOPSIS (C)

#include "cpic.h"

/* Set_Sync_Level */
CM_ENTRY cmssl(
 unsigned char CM_PTR conversation_id,
 CM_INT32 CM_PTR sync_level,
 CM_INT32 CM_PTR return_code);

SYNOPSIS (PERL)

use Cpic;
$rc = Cpic::Set_Sync_Level($cid,$slevel);

DESCRIPTION

Set_Sync_Level (cmssl) is used by a program to set the
sync_level characteristic for a given conversation. The sync_level
characteristic is used to specify the level of synchronization processing
between the two programs. It determines whether the programs support no
synchronization, confirmation-level synchronization (using the Confirm and
Confirmed CPI-C calls), or sync-point-level synchronization (using the calls
of a resource recovery interface). Set_Sync_Level overrides the value
that was assigned when the Initialize_Conversation call was
issued.

This function currently has no effect and is supplied for program
compatibility reasons.

 GlAPI

Gallagher & Robertson GlAPI 105

RETURN VALUE

return_code CM_OK

CM_PROGRAM_PARAMETER_CHECK.

The conversation_id is undefined or the
application/API is in RESET state.

ERRORS

If an error has occurred, return_code will be different from CM_OK and
the value will describe the error.

GlAPI

106 GlAPI Gallagher & Robertson

Set_TP_Name (cmstpn)

not emulation
CPI-C

NAME

Set_TP_Name (cmstpn) - set the remote program name

SYNOPSIS (C)

#include "cpic.h"

/* Set_TP_name */
CM_ENTRY cmstpn(
 unsigned char CM_PTR conversation_id,
 unsigned char CM_PTR TP_name,
 CM_INT32 CM_PTR TP_name_len,
 CM_INT32 CM_PTR return_code);

SYNOPSIS (PERL)

use Cpic;
$rc = Cpic::Set_TP_Name($cid, $name);

DESCRIPTION

Set_TP_Name (cmstpn) is used by a program to set the TP_name and
TP_name_length characteristics for a given conversation.
Set_TP_Name overrides the current values that were originally acquired
from the side information using the sym_dest_name. This call does not
change the values in the side information. Set_TP_Name only changes the
TP_name and TP_name_length characteristics for this conversation.

This function currently has no effect and is supplied for program
compatibility reasons.

 GlAPI

Gallagher & Robertson GlAPI 107

RETURN VALUE

return_code CM_OK

CM_PROGRAM_PARAMETER_CHECK.

The conversation_id is undefined or the
application/API is in RESET state.

ERRORS

If an error has occurred, return_code will be different from CM_OK and
the value will describe the error.

GlAPI

108 GlAPI Gallagher & Robertson

Set_Conversation_Security_Type (cmscst)

not emulation
CPI-C

NAME

Set_Conversation_Security_Type (cmscst) - set the
conversation security type (same as xcscst)

SYNOPSIS (C)

#include "cpic.h"

/* Set_Conversation_Security_Type */
CM_ENTRY cmscst(
 unsigned char CM_PTR conversation_id,
 CM_INT32 CM_PTR conv_sec_type,
 CM_INT32 CM_PTR return_code);

SYNOPSIS (PERL)

use Cpic;
$rc = Cpic::Set_Conversation_Security_Type($cid,$t);

DESCRIPTION

Set_Conversation_Security_Type (cmscst) is used by a
program to set the conversation_security_type characteristic for a
conversation. Set_Conversation_Security_Type overrides the
current value, which was originally acquired from the side information using
sym_dest_name.

This function currently has no effect and is supplied for program
compatibility reasons.

 GlAPI

Gallagher & Robertson GlAPI 109

RETURN VALUE

return_code CM_OK

CM_PROGRAM_PARAMETER_CHECK.

The conversation_id is undefined or the
application/API is in RESET state.

ERRORS

If an error has occurred, return_code will be different from CM_OK and
the value will describe the error.

GlAPI

110 GlAPI Gallagher & Robertson

Set_Conversation_Security_User_ID (cmscsu)

not emulation
CPI-C

NAME

Set_Conversation_Security_User_ID (cmscsu) - set the
conversations security id

SYNOPSIS (C)

#include "cpic.h"

/* Set_Conversation_Security_User_ID */
CM_ENTRY cmscsu(
 unsigned char CM_PTR conversation_id,
 unsigned char CM_PTR user_id,
 CM_INT32 CM_PTR user_id_len,
 CM_INT32 CM_PTR return_code);

SYNOPSIS (PERL)

use CpicXXXX;
$rc = Cpic::Set_Conversation_Security_User_ID
($cid,$uid);

DESCRIPTION

Set_Conversation_Security_User_ID (cmscsu) is used by a
program to set the security_user_ID and
security_user_ID_length characteristics for a conversation.
Set_Conversation_Security_User_ID overrides the current
values, which were originally acquired from the side information using
sym_dest_name.

This function currently has no effect and is supplied for program
compatibility reasons.

 GlAPI

Gallagher & Robertson GlAPI 111

RETURN VALUE

return_code CM_OK

CM_PROGRAM_PARAMETER_CHECK.

The conversation_id is undefined or the
application/API is in RESET state.

ERRORS

If an error has occurred, return_code will be different from CM_OK and
the value will describe the error.

GlAPI

112 GlAPI Gallagher & Robertson

Set_Conversation_Security_Password (cmscsp)

not emulation
CPI-C

NAME

Set_Conversation_Security_Password (cmscsp) - set the
conversations security password id

SYNOPSIS (C)

#include "cpic.h"

/* Set_Conversation_Security_Password */
CM_ENTRY cmscsp(
 unsigned char CM_PTR conversation_id,
 unsigned char CM_PTR password_id,
 CM_INT32 CM_PTR password_id_len,
 CM_INT32 CM_PTR return_code);

SYNOPSIS (PERL)

use Cpic;
$rc = Cpic::Set_Conversation_Security_Password($cid,$pw);

DESCRIPTION

Set_Conversation_Security_Password (cmscsp) is used by a
program to set the security_password and
security_password_length characteristics for a conversation.
Set_Conversation_Security_Password overrides the current
values, which were originally acquired from the side information using
sym_dest_name.

This function currently has no effect and is supplied for program
compatibility reasons.

 GlAPI

Gallagher & Robertson GlAPI 113

RETURN VALUE

return_code CM_OK

CM_PROGRAM_PARAMETER_CHECK.

The conversation_id is undefined or the
application/API is in RESET state.

ERRORS

If an error has occurred, return_code will be different from CM_OK and
the value will describe the error.

GlAPI

114 GlAPI Gallagher & Robertson

Set_CPIC_Side_Information (xcmssi)

not emulation
CPI-C

NAME

Set_CPIC_Side_Information (xcmssi) - set side information

SYNOPSIS (C)

#include "cpic.h"

/* Set_CPIC_Side_Information */
CM_ENTRY xcmssi(
 unsigned char CM_PTR key_lock,
 SIDE_INFO CM_PTR side_info_entry,
 CM_INT32 CM_PTR side_info_length,
 CM_INT32 CM_PTR return_code);

SYNOPSIS (PERL)

N/A

DESCRIPTION

Set_CPIC_Side_Information (xcmssi) is used by a program to
set the side information. Set_CPIC_Side_Information overrides the
current values, which were originally acquired from the side information
using sym_dest_name. The sym_dest_name will be used by the next
call to Accept_Conversation to retrieve the line handler parameters to
wait for the incoming connection.

#ifdef windows
WORD wVer = 2;
WCPICDATA CPICData;

 if (WinCPICStartup(wVer, &CPICData) != 0)
 return;
#endif

 memset(&side_info, 0, sizeof(side_info));

/* set name to look for in the cpic.cfg file */
 strncpy(side_info.sym_dest_name, "dps8in",
 sizeof(side_info.sym_dest_name));

 GlAPI

Gallagher & Robertson GlAPI 115

 len = (CM_INT32) sizeof(side_info);
 Set_CPIC_Side_Information("", &side_info, &len, &retcode);

/* wait for the incoming connection */
 Accept_Conversation(conv_id, &retcode);

RETURN VALUE

return_code CM_OK

CM_PROGRAM_PARAMETER_CHECK.

The conversation_id is undefined or the
application/API is in RESET state.

ERRORS

If an error has occurred, return_code will be different from CM_OK and
the value will describe the error.

GlAPI

116 GlAPI Gallagher & Robertson

Set_Conversation_Security_Type (xcscst)

not emulation
CPI-C

NAME

Set_Conversation_Security_Type (xcscst) - set the
conversation security type (same as cmscst)

SYNOPSIS (C)

#include "cpic.h"

/* Set_Conversation_Security_Type */
CM_ENTRY xcscst(
 unsigned char CM_PTR conversation_id,
 CM_INT32 CM_PTR conv_sec_type,
 CM_INT32 CM_PTR return_code);

SYNOPSIS (PERL)

use CpicXXXX;
$rc = CpicXXXX::Set_Conversation_Security_Type
($cid,$stype);

DESCRIPTION

Set_Conversation_Security_Type (xcscst) is used by a
program to set the conversation_security_type characteristic for a
conversation. Set_Conversation_Security_Type overrides the
current value, which was originally acquired from the side information using
sym_dest_name.

This function currently has no effect and is supplied for program
compatibility reasons.

 GlAPI

Gallagher & Robertson GlAPI 117

RETURN VALUE

return_code CM_OK

CM_PROGRAM_PARAMETER_CHECK.

The conversation_id is undefined or the
application/API is in RESET state.

ERRORS

If an error has occurred, return_code will be different from CM_OK and
the value will describe the error.

GlAPI

118 GlAPI Gallagher & Robertson

WinCPICIsBlocking

NAME

WinCPICIsBlocking - Windows CPI-C call to test if blocking

SYNOPSIS (C)

Windows only

#include "cpic.h"

BOOL WINAPI WinCPICIsBlocking(void);

SYNOPSIS (PERL)

N/A

DESCRIPTION

WinCPICIsBlocking determines whether the executing task is waiting
for a previous synchronous call to finish.

This function currently has no effect and is supplied for program
compatibility reasons.

RETURN VALUE

return TRUE

Task is waiting for an outstanding call.

ERRORS

If an error has occurred the return code will be FALSE.

 GlAPI

Gallagher & Robertson GlAPI 119

WinCPICSetBlockingHook

NAME

WinCPICSetBlockingHook - Windows CPI-C call set blocking hook

SYNOPSIS (C)

Windows only

#include "cpic.h"

FARPROC WINAPI WinCPICSetBlockingHook(
 FARPROC lpfnBlockingHook);

SYNOPSIS (PERL)

N/A

DESCRIPTION

WinCPICSetBlockingHook allows a program to set a Hooking function
which will be called during blocking calls.

This function currently has no effect and is supplied for program compati-
bility reasons.

RETURN VALUE

return TRUE

Successful

ERRORS

If an error has occurred the return code will be FALSE.

GlAPI

120 GlAPI Gallagher & Robertson

WinCPICUnhookBlockingHook

NAME

WinCPICUnhookBlockingHook - Windows CPI-C call removes
blocking hook

SYNOPSIS (C)

Windows only

#include "cpic.h"

BOOL WINAPI WinCPICUnhookBlockingHook(void);

SYNOPSIS (PERL)

N/A

DESCRIPTION

WinCPICUnhookBlockingHook allows a program to reset a Hooking
function which was set with the WinCPICSetBlockingHook call.

This function currently has no effect and is supplied for program compati-
bility reasons.

RETURN VALUE

return TRUE

Successful.

ERRORS

If an error has occurred the return code will be FALSE.

 GlAPI

Gallagher & Robertson GlAPI 121

WinCPICStartup

NAME

WinCPICStartup - Windows CPI-C initialization call

SYNOPSIS (C)

Windows only

#include "cpic.h"

int WINAPI WinCPICStartup(
 WORD wVersionRequired,
 LPWCPICDATA lpwCPICData);

SYNOPSIS (PERL)

N/A

DESCRIPTION

WinCPICStartup allows a program to specify a version for the Window
CPI-C DLL. The DLL will return details. This function must be called once
as the first call to the Windows CPI-C DLL.

RETURN VALUE

return 0

Successfully initialized

ERRORS

If an error has occurred the return code will be different to 0 and the
value will describe the error.

GlAPI

122 GlAPI Gallagher & Robertson

WinCPICCleanup

NAME

WinCPICCleanup - Windows CPI-C cleanup termination call

SYNOPSIS (C)

Windows only

#include "cpic.h"

BOOL WINAPI WinCPICCleanup(void);

SYNOPSIS (PERL)

N/A

DESCRIPTION

WinCPICCleanup terminates and deallocated internal resources. This
function must be called once as the last call to the Windows CPI-C DLL.

RETURN VALUE

return TRUE

Successfully terminated.

ERRORS

If an error has occurred the return code will be FALSE.

 GlAPI

Gallagher & Robertson GlAPI 123

api_msg

NAME

api_msg - delivers a message based on the CPI-C retcode.

SYNOPSIS (C)

#include "cpic.h"

char * api_msg (int keymsg, char *dummyfile)

SYNOPSIS (PERL)

use CpicXXXX;
$message = CpicXXXX::Api_msg ($keymsg);

DESCRIPTION

When api_msg() is called with a return code from another CPI-C function
in the keymsg variable, it will return a text message describing the return
code in question.

This function is not X/Open compliant and is only available when linking to
the static libraries. It is not available in the Windows CPI-C DLLs.

RETURN VALUE

The format of the returned text message is:

message identifier 4 digits

filler 3 spaces

message text 80 characters

end of string 1 byte (null character)

GlAPI

124 GlAPI Gallagher & Robertson

CPI-C 3270: keyboard input
CPI-C 3270 API supports the function key definitions defined in the IBM
HLLAPI interface. It uses '@' as an escape key followed by a mnemonic code that
corresponds to the supported host function. An example is PF1, which is coded
as @1.

The application should fill the Send_Data buffer with characters and
functions keys in the order they would have been typed in by a user. This means
that the key initiating a send (ENTER, PFX, PAX or CLEAR) should be coded at the
end of the buffer delivered to Send_Data. Within the buffer you may use TAB,
HOME, BACKSPACE or other local functions. Below you will find a complete list of
functions keys currently supported:

Meaning Mnemonic

@ @@

Backspace @<

Backtab (Left Tab) @B

Clear @C

Cursor Down @V

Cursor Left @L

Cursor Right @Z

Cursor Select @A@J

Cursor Up @U

Delete @D

Dup @S@x

Enter @E

Erase EOF @F

Erase Input (EOP) @G

Erase Input (EOP) @A@F

Field Mark @S@y

 GlAPI

Gallagher & Robertson GlAPI 125

Meaning Mnemonic

Home @0 (zero)

Insert Mode @I

Left Tab (Back Tab) @B

New Line @N

Reset @R

Right Tab (Tab) @T

Sys Request Note: Used as Break key @A@H

Tab (Right Tab) @T

PA1 @x

PA2 @y

PA3 @z

PF1/F1 @1

PF2/F2 @2

PF3/F3 @3

PF4/F4 @4

PF5/F5 @5

PF6/F6 @6

PF7/F7 @7

PF8/F8 @8

PF9/F9 @9

PF10/F10 @a

PF11/F11 @b

PF12/F12 @c

PF13 @d

PF14 @e

PF15 @f

GlAPI

126 GlAPI Gallagher & Robertson

Meaning Mnemonic

PF16 @g

PF17 @h

PF18 @i

PF19 @j

PF20 @k

PF21 @l

PF22 @m

PF23 @n

PF24 @o

NOTE: If you want to use the "at" sign (@) in the Data String, you must use the
two-byte code "@@".

 GlAPI

Gallagher & Robertson GlAPI 127

CPI-C 5250: keyboard input
CPI-C 5250 API supports the function key definitions defined in the IBM
HLLAPI interface. It uses '@' as an escape key followed by a mnemonic code that
corresponds to the supported host function. An example is PF1, which is coded
as @1.

The application should fill the Send_Data buffer with characters and
functions keys in the order they would have been typed in by a user. This means
that the key initiating a send (ENTER, PFX, PAX or CLEAR) should be coded at the
end of the buffer delivered to Send_Data. Within the buffer you may use TAB,
HOME, BACKSPACE or other local functions. Below you will find a complete list of
functions keys currently supported:

Meaning Mnemonic

@ @@

Backspace @<

Backtab (Left Tab) @B

Clear @C

Cursor Down @V

Cursor Left @L

Cursor Right @Z

Cursor Select @A@J

Cursor Up @U

Delete @D

Dup @S@x

Enter @E

Erase EOF @F

Erase Input (EOP) @G

Erase Input (EOP) @A@F

Field Mark @S@y

GlAPI

128 GlAPI Gallagher & Robertson

Meaning Mnemonic

Home @0 (zero)

Insert Mode @I

Left Tab (Back Tab) @B

New Line @N

Reset @R

Right Tab (Tab) @T

Sys Request Note: Used as Break key @A@H

Tab (Right Tab) @T

PA1 @x

PA2 @y

PA3 @z

PF1/F1 @1

PF2/F2 @2

PF3/F3 @3

PF4/F4 @4

PF5/F5 @5

PF6/F6 @6

PF7/F7 @7

PF8/F8 @8

PF9/F9 @9

PF10/F10 @a

PF11/F11 @b

PF12/F12 @c

PF13 @d

PF14 @e

PF15 @f

 GlAPI

Gallagher & Robertson GlAPI 129

Meaning Mnemonic

PF16 @g

PF17 @h

PF18 @i

PF19 @j

PF20 @k

PF21 @l

PF22 @m

PF23 @n

PF24 @o

NOTE: If you want to use the "at" sign (@) in the Data String, you must use the
two-byte code "@@".

GlAPI

130 GlAPI Gallagher & Robertson

CPI-C 7800: keyboard input
CPI-C 7800 API supports function key definitions in very much the same
style as the CPI-C 3270 API. It uses '@' as an escape key followed by a
mnemonic code that corresponds to the supported host function. An example is
F1, which is coded as @1.

The application should fill the Send_Data buffer with characters and
functions keys in the order they would have been typed in by a user. This means
that the key initiating a send (i.e. XMIT, F1-F12) should be coded at the end of
the buffer delivered to Send_Data. Within the buffer you may use TAB, HOME,
BACKSPACE or other local functions. Below you will find a complete list of
functions keys currently supported:

Meaning Mnemonic

@ @@

Backspace @<

Backtab (Left Tab) @B

Clear @C

Cursor Down @V

Cursor Left @L

Cursor Right @Z

Cursor Up @U

Delete Character @D

Host Break @A@H

Set Function Code Character: ‘c’ @A@C@c

Attribute: ‘c’ @S@Ac

Delete Attribute @S@B

Delete Line @S@D

Insert Line @S@I

Previous Segment in 72 line mode @S@M

 GlAPI

Gallagher & Robertson GlAPI 131

Meaning Mnemonic

Next Segment in 72 line mode @S@N

Paste Line @S@P

Reset Initial State @S@R

Tab Clear @S@c

Fold Line @S@f

Unfold Line @S@u

Carriage Return @S@r

Skip Line @S@s

Tab Set @S@t

Duplicate Character @S@x

Transmit Data @E

Transmit All @P

Erase EOF @F

Erase EOP @G

Home @0 (zero)

Insert Mode @I

Insert Mode Reset @O

Left Tab (Back Tab) @B

New Line @N

Reset @R

Right Tab (Tab) @T

Tab (Right Tab) @T

F1 @1

F2 @2

F3 @3

F4 @4

F5 @5

GlAPI

132 GlAPI Gallagher & Robertson

Meaning Mnemonic

F6 @6

F7 @7

F8 @8

F9 @9

F10 @a

F11 @b

F12 @c

Shifted F1 @d

Shifted F2 @e

Shifted F3 @f

Shifted F4 @g

Shifted F5 @h

Shifted F6 @i

Shifted F7 @j

Shifted F8 @k

Shifted F9 @l

Shifted F10 @m

Shifted F11 @n

Shifted F12 @o

NOTE: If you want to use the "at" sign (@) in the Data String, you must use the
two-byte code "@@".

 GlAPI

Gallagher & Robertson GlAPI 133

CPI-C DKU: keyboard input
CPI-C DKU API supports function key definitions in very much the same
style as the CPI-C 3270 API. It uses '@' as an escape key followed by a
mnemonic code that corresponds to the supported host function. An example is
F1, which is coded as @1.

The application should fill the Send_Data buffer with characters and
functions keys in the order they would have been typed in by a user. This means
that the key initiating a send (i.e. XMIT, F1-F12) should be coded at the end of
the buffer delivered to Send_Data. Within the buffer you may use TAB, HOME,
BACKSPACE or other local functions. Below you will find a complete list of
functions keys currently supported:

Meaning Mnemonic

@ @@

Backspace @<

Backtab (Left Tab) @B

Clear @C

Cursor Down @V

Cursor Left @L

Cursor Right @Z

Cursor Up @U

Delete Character @D

Delete Line @S@D

Insert Line @S@I

Paste Line @S@P

Clear All Tab Stops @S@a

Back Character @S@b

Clear Tab Stop @S@c

Fold Line @S@f

GlAPI

134 GlAPI Gallagher & Robertson

Meaning Mnemonic

Insert Character @S@i

Paste Character @S@p

Unfold Line @S@u

Carriage Return @S@r

Skip Line @S@s

Set Tab Stop @S@t

Duplicate characer @S@x

Transmit @E

Transmit Page @P

Erase EOF @F

Erase EOP @G

Home @0 (zero)

Insert Mode @I

Left Tab (Back Tab) @B

New Line @N

Reset @R

Right Tab (Tab) @T

Tab (Right Tab) @T

F1 @1

F2 @2

F3 @3

F4 @4

F5 @5

F6 @6

F7 @7

F8 @8

F9 @9

 GlAPI

Gallagher & Robertson GlAPI 135

Meaning Mnemonic

F10 @a

F11 @b

F12 @c

Host Break @A@H

FKC-0 Send FKC Only @A@A@0

FKC-1 Send FKC and Screen @A@A@1

Set Function Code Character: ‘c’ @A@C@c

NOTE: If you want to use the "at" sign (@) in the Data String, you must use the
two-byte code "@@".

GlAPI

136 GlAPI Gallagher & Robertson

CPI-C configuration file: cpic.cfg
The configuration file, cpic.cfg, will be read from the default Host Links
configuration directory and the full path name is:

UNIX location /usr/gar/config/default/cpic.cfg
Windows location \gar\config\default\cpic.cfg

The Host Links installation program will copy the example configuration file
to this directory at first time installation. This must be modified to suite your
environment. Only the configuration file in the default directory is read, you
cannot have private user configuration directories.

cpic.cfg is read sequentially and can consist of several sections which
enables the application to address one of several hosts and host applications. A
"Default" section can be used for parameters common to all connections, and
"node hostlabel" sections can be used to group parameters specific to each host
application.

The -host can be user to precede host connection parameters and -user to
precede CPI-C parameters.

The null-terminated string given to Initialize_Conversation in the
character buffer sym_dest_name must match the "hostlabel" string in "node
hostlabel".

Below you will see an example of a cpic.cfg that can be used to access an
IBM host application either through OSI (OSF/Janus in Datanet) or TCP/IP
(TN3270):

* Sample cpic.cfg file
Default
 -host
 -s_
 -user
 -snd off

 -dbg

 GlAPI

Gallagher & Robertson GlAPI 137

node tcpibm
 -li tcp
 -am tn3270
 -tm IBM-3278-2-e
 -ll 6144
* remember to include "-ho ipaddress" to address

* remote host

node osiibm
 -li dsa
 -hm ibm
 -tm ibm3270
 -ll 6144
* remember to include "-da appl -dn host -lm logmode"
* to address host and application. "-dn host" is a
* reference to "rsc host" in dsa.cfg

node iofen06
 -li dsa
 -hm dps7
 -da iof
 -dn en06
 -du user
 -pw passwd

node tssdps5
 -li dsa:192.150.211.4
* -d_ on
* -s_ on
 -hm dps8
 -da tss
 -dn dps5
 -ur userrec
 -pw passwd

* End of cpic.cfg

NOTE: '*' at the beginning of a line marks it as a comment.

GlAPI

138 GlAPI Gallagher & Robertson

In order to check your connection to the host application(s), you should, if
possible, log in interactivly using the real emulators G3270, G5250, V78sim
or Qsim. G3270 uses the configuration file g3270.cfg, G5250 uses the
configuration file g5250.cfg, V78sim uses the configuration file
v78sim.cfg and Qsim uses the configuration file qsim.cfg. When all
parameters are set correctly and a successful connection is achieved, the line
handler parameters can be copied from the command line or
g3270.cfg/g5250.cfg/v78sim.cfg/qsim.cfg to cpic.cfg.

 GlAPI

Gallagher & Robertson GlAPI 139

CPI-C API Parameters
Parameter Description

-CW ON/off Wait for log-on screen/welcome banner. Turn it off if
nothing is sent by the host application after the
connection has been established.

-DBG on/OFF Turns internal tracing on. The trace file will be located
in the Debug directory, unless -REP is in use.

-DD on/OFF Tell CPI-C to disconnect the line when it gets changed
to the DEALLOCATE state.

-DG on/OFF Tells CPI-C if it should change to the DEALLOCATE
state when it receives group terminated data from the
host.

-ET n Indicates the enclosure type to use when sending
buffered data to the host. Default is 0 (e_none). Other
values are, 1 = e_segment, 2=e_message, 3=e_group.
See a description of enclosures on page 20.

-LW nn Sets the time CPI-C will wait for an incoming call with
the cmaccp function. Default is wait indefinitely.

-REP filename Filename/path for internal tracing. See -DBG option.

-RW nn Receive wait. Time-out value in seconds for Receive
call. The default is to block until data/disconnection is
received from the host application.

-S_ on/OFF Write internal event- and data trace information to
stderr.

-SND ON/off The API is in send state after issuing a Allocate
call. If turned OFF, it will be in receive state after the
Allocate call.

GlAPI

140 GlAPI Gallagher & Robertson

Parameter Description

-SS on/OFF When set ON, this option makes CPI-C compatible with
pre-5.0 versions of G&R/CPI-C API Starter
Set. It sets the following initial states:
Deallocate type is set to CM_DEALLOCATE_ABEND
and Send Type is set to
CM_SEND_AND_PREPARE_TO_RECEIVE. Also the
Receive function will only return when it has
received the turn from the host.

CPI-C Emulation API Parameters
The default value of the option, which will be used when the parameter is not
specified, is written in CAPITAL letters. For complete list of emulation specific
parameters see the G3270, G5250, V78sim and Qsim manuals

Parameter Description

-BS on/OFF Receive return on clear screen on local token. (CPI-C
3270, 7800 and DKU only)

-DBG on/OFF Turns internal tracing on. The trace file will be located
in the Debug directory unless -REP is in use.

-REP filename Filename/path for internal tracing. See -DBG option.

-RW nn Receive wait. Time-out value in seconds for Receive
call. The default is to block until data/disconnection is
received from the host application.

-SND ON/off The API is in send state after issuing a Allocate
call. If turned OFF, it will be in receive state after the
Allocate call.

 GlAPI

Gallagher & Robertson GlAPI 141

Troubleshooting
If you are experiencing any kind of problem when using any of the GlAPI CPI-C
programmatic interfaces to access your host application, the CPI-C trace file
and/or the line handler trace file will provide useful documentation of the
problem. Either for your own use, to the G&R distributor or to G&R if it turns
out to be caused by an error in the program itself. See the appendix Host Links
trace for a full discussion of how to generate G&R/Host Links trace files.

See section entitled Gline data and session trace on page 142 for a description of
the way the standard debug sub-directories and file names are generated.

GlAPI tracefile
When activated, the GlAPI trace routine will log every Gline API function call
and the parameters passed to it by the GlAPI application to the file 'glapi.dbg',
located in the users debugging directory (e.g. /usr/gar/debug/jim/glapi.dbg').

GlAPI debugging is activated by an environment variable called
'GAR_GLAPIDEBUG' e.g. for a UNIX system the following command is
necessary:

GAR_GLAPIDEBUG=1
export GAR_GLAPIDEBUG

CPI-C tracefile
UNIX location /usr/gar/debug/XXX/cpA-NNNN.dbg
Windows location C:\gar\debug/XXX/cpA-NNNN.dbg

(XXX = user name)
(A =API reference: i=native CPI-C, 3=3270, 5=5250, 7=7800, d=DKU)
(NNNN=process id)

GlAPI

142 GlAPI Gallagher & Robertson

This trace file contains details about the API’s processing of both host input and
user input. To enable this tracing, add the –DBG option to the relevant section of
the cpic.cfg configuration file:

node TP8WS002
-li YYY
..
-user
 -dbg

(YYY =line handler identification, i.e. DSA, DIWS or TCP)

Line handler trace file
UNIX location /usr/gar/debug/XXX/cpA-NNNN.gli
Windows location C:\gar\debug/XXX/cpA-NNNN.gli

(XXX = user name)

This trace file contains details about line handler operation. To enable line
handler tracing, add one or both of the –D_ and –S_ options to the relevant
section of the cpic.cfg configuration file before the CPI-C -user options:

node TP8WS002
-li YYY
 -s_ on
 -d_ on
-user
..

 (YYY =line handler identification, i.e. DSA, DIWS or TCP)

When connecting through Ggate
UNIX location: /usr/gar/debug/ZZZZ/ggaNN-PPPP.dbg
Windows location: C:\gar\debug\ZZZZ\ggaNN-PPPP.dbg

(ZZZZ = DSA node name, e.g. EN06 or PH13)
(NN =Instance number, starting at 01)
(PPPP =IP-address of the client system, running Qsim in this case)

 GlAPI

Gallagher & Robertson GlAPI 143

When a application based on GlAPI are connecting through Ggate to the host
application, the line handler trace will be generated on the Ggate system, with
the name and location showed in the table above. In this case the relevant section
of the cpic.cfg configuration file would look like this:

node TP8WS002
-li YYY:PPPP
 -s_ on
 -d_ on
-user
..

(YYY =line handler identification, i.e. DSA or DIWS)
(PPPP =IP-address of the system running Ggate)

Trace file names
The default trace file names are built using the following structure:

<product_id><session_id>-<process_id>.<debug_type>

Value Description
cpi CPI-C API
cp3 CPI-C 3270
cp5 CPI-C 5250
cp7 CPI-C 7800

product_id

cpd CPI-C DKU
session_id (nn) Only if multi-session application, 1-63
process_id n (n n n...) number of integers varies by platform

dbg application level debug debug_type
gli line trace

GlAPI

144 GlAPI Gallagher & Robertson

Example:

\gar\debug\system debug directory for user "system"
cpi-16.dbg CPI-C single session debug (-dbg)
cpi-16.gli CPI-C single session line

trace
(-li dsa
-s_)

cpi2-123.dbg CPI-C session 2 application
debug

(-dbg)

 GlAPI

Gallagher & Robertson GlAPI 145

Sample Gline API programs

apitest.c: One host session

/*--

 apitest

 Purpose : Show the use of Host Links GlAPI library to
 handle one host session.

 Author : Michael Sandoy, Gallagher & Robertson A/S Norway

--*/

#include <stdio.h>
#include <string.h>
#include "glapi.h"

char *parameter[] = {"-LI", "DSA", "-HM", "DPS8", NULL};
char connect_msg[] = "$*$CN TSS,VD88";
char password[] = "GAR$PASSWORD";
char lwd_cmd[] = "LWD";
char bye_cmd[] = "BYE";
char dis_cmd[] = "$*$DIS";

void display_input(void)
{
 unsigned char *p;
 enclosure_t e;
 int n;

 do {
 n = line_get(&p, &e);
 switch (e) {
 case e_attmsg:
 printf("Attention message :\n");
 default:
 p[n] = '\0';
 printf("%s\n", p);
 break;
 }
 }
 while (!line_our_turn());
}

void send_msg(char *message)
{
 printf("%s\n", message);
 line_put(message, strlen(message), e_group);

GlAPI

146 GlAPI Gallagher & Robertson

}

int main(void)
{
 int i;

 printf("***\n");
 printf("**** Host Links GlAPI example connecting to one host ***\n");
 printf("***\n\n");

 if (!line_initialize("", 0, "")) {
 printf("**** Error initializing GlAPI ****\n");
 return(1);
 }

 for (i = 0; parameter[i] != NULL; i++)
 if (line_init_params(parameter[i]) != 0) {
 fprintf(stderr, "%s\n", line_error);
 line_release();
 return(2);
 }
 if (line_start() != 0) {
 fprintf(stderr, "%s\n", line_error);
 line_stop();
 line_release();
 return(2);
 }
 printf("**** Connecting to host\n");
 send_msg(connect_msg);
 display_input();
 printf("**** Sending user+password\n");
 send_msg(password);
 display_input();
 printf("**** Execute ListWorkingDirectory (LWD) command\n");
 send_msg(lwd_cmd);
 display_input();
 printf("**** Execute BYE on host\n");
 send_msg(bye_cmd);
 display_input();
 line_stop();
 line_release();

 printf("***\n");
 printf("**** Host Links GlAPI example terminating ****\n");
 printf("***\n\n");
 return 0;
}

/*--*/
/*----- END : apitest -----*/
/*--*/

 GlAPI

Gallagher & Robertson GlAPI 147

apitest2.c: Two host sessions

/*--

 apitest2

 Purpose : Show the use of Host Links GlAPI library to
 handle two host sessions.

 Author : Michael Sandoy, Gallagher & Robertson A/S Norway

--*/

#include <stdio.h>
#include <string.h>
#include "glapi.h"

char *parameteri[] = {"-LI", "DSA", "-HM", "DPS8",
 "-MN", "TEST", "-LN", "IS3B", NULL};
char *parametero[] = {"-LI", "DSA", "-HM", "DPS8", NULL};
char connect_msg[] = "$*$CN TSS,VD88";
char password[] = "GAR$PASSWORD";
char dis_cmd[] = "$*$DIS";

int lid, host_lid, term_lid;
boolean h_up = FALSE;
boolean t_up = FALSE;

void display_input(void)
{
 unsigned char *p;
 enclosure_t e;
 int n;

 do {
 n = line_get(&p, &e);
 switch (e) {
 case e_attmsg:
 printf("Attention message :\n");
 default:
 p[n] = '\0';
 printf("%s\n", p);
 break;
 }
 }
 while (!line_our_turn());
}

void send_msg(char *message)
{
 printf("%s\n", message);
 line_put(message, strlen(message), e_group);
}

void process_host_input(void)
{

GlAPI

148 GlAPI Gallagher & Robertson

 unsigned char *p;
 enclosure_t e;
 int n;

 do {
 n = line_get(&p, &e);
 switch (e) {
 case e_attmsg:
 if (!line_connected())
 h_up = FALSE;
 printf("Attention message :\n");
 p[n] = '\0';
 printf("%s\n", p);
 break;
 default:
 line_switch(term_lid);
 line_put(p, n, e);
 break;
 }
 line_switch(host_lid);
 } while (e <= e_message);
 return;
}

void process_term_input(void)
{
 unsigned char *p;
 enclosure_t e;
 int n;

 do {
 n = line_get(&p, &e);
 switch (e) {
 case e_attmsg:
 if (!line_connected())
 t_up = FALSE;
 printf("Attention message :\n");
 p[n] = '\0';
 printf("%s\n", p);
 break;
 default:
 line_switch(host_lid);
 line_put(p, n, e);
 break;
 }
 line_switch(term_lid);
 } while (e <= e_message);
 return;
}

int main(void)
{
 int i;

 printf("**\n");
 printf("**** Host Links GlAPI example handling two lines *\n");
 printf("**\n\n");

 if (!line_initialize("", 0, "")) {
 printf("**** Error initializing GlAPI ****\n");
 return(1);
 }

 GlAPI

Gallagher & Robertson GlAPI 149

 printf("**** Starting line module for incoming session\n");
 if (line_get_lid(&term_lid) == FALSE) {
 fprintf(stderr, "%s\n", line_error);
 line_release();
 return(2);
 }
 line_switch(term_lid);
 for (i = 0; parameteri[i] != NULL; i++)
 if (line_init_params(parameteri[i]) != 0) {
 fprintf(stderr, "%s\n", line_error);
 line_release();
 return(2);
 }
 if (line_start() != 0) {
 fprintf(stderr, "%s\n", line_error);
 line_stop();
 line_release();
 return(2);
 }
 t_up = TRUE;

 printf("**** Starting line module for outgoing session\n");
 host_lid = term_lid + 1;
 if (line_get_lid(&host_lid) == FALSE) {
 fprintf(stderr, "%s\n", line_error);
 line_release();
 return(2);
 }
 line_switch(host_lid);
 for (i = 0; parametero[i] != NULL; i++)
 if (line_init_params(parametero[i]) != 0) {
 fprintf(stderr, "%s\n", line_error);
 line_release();
 return(2);
 }
 if (line_start() != 0) {
 fprintf(stderr, "%s\n", line_error);
 line_stop();
 line_release();
 return(2);
 }
 printf("**** Connecting to host\n");
 send_msg(connect_msg);
 display_input();
 send_msg(password);
 display_input();
 h_up = TRUE;

 while (h_up && t_up) {
 lid = line_wait(30);
 if (lid == term_lid) {
 printf("**** Terminal input received \n");
 line_switch(term_lid);
 process_term_input();
 }
 else if (lid == host_lid) {
 printf("**** Host input received \n");
 line_switch(host_lid);
 process_host_input();
 }
 else if (lid == 99) {
 fprintf(stderr, "%s\n", line_error);
 line_release();

GlAPI

150 GlAPI Gallagher & Robertson

 return(2);
 }
 else
 printf("**** Timeout !\n");
 }

 if (!t_up)
 printf("**** Terminal line was disconnected\n");
 else if (!h_up)
 printf("**** Host line was disconnected\n");

 if (h_up) {
 printf("**** Disconnecting from host\n");
 line_switch(host_lid);
 send_msg(dis_cmd);
 display_input();
 }
 if (t_up) {
 printf("**** Disconnecting from terminal\n");
 line_switch(term_lid);
 send_msg(dis_cmd);
 display_input();
 }
 line_switch(term_lid);
 line_stop();
 line_switch(host_lid);
 line_stop();
 line_release();

 printf("**\n");
 printf("**** Terminating Host Links GlAPI example ****\n");
 printf("**\n\n");
 return 0;
}

/*--*/
/*----- END : apitest2 -----*/
/*--*/

 GlAPI

Gallagher & Robertson GlAPI 151

apiserv.c: Server session

/*--

 apiserv

 Purpose : Shows the use of Host Links GlAPI library to
 accept and handle one client session from apiclnt

 Author : Phil Pilley, Gallagher & Robertson A/S Norway

--*/

#include <stdio.h>
#include <string.h>
#include "glapi.h"

/* In both examples, the connections from GlAPI are through a remote */
/* Ggate on the 'gars' Unix system. The syntax "-li DSA:gars" signifies */
/* That GlAPI will connect to Ggate on "gars", and use the Gline DSA */
/* module. */

/* In the below example, the -CO is the "connection name" configured at */
/* the Ggate level, in the gline config files. */

char *parameters1[] = {"-li", "dsa", "-ln", "phil",
 "-mn", "apitest", "-t_", "-s_", NULL};

char *parameters2[] = {"-li", "dsa:gars", "-ln",
 "-mn", "apitest", NULL};

char *welcome =
 "Welcome...\n\tAnything you send will be echoplex back to you\n";

int wait_connection(void)
{
 unsigned char *p;
 enclosure_t e;
 int n;
 int found = 0;
 int i = 0;

 printf("Listening...\n");
 while (!found && i++ < 30) {
 line_wait(2); /* wait an event for max 2 seconds */
 printf(".");
 if (line_input_available()) {
 n = line_get(&p, &e);
 printf("\n%.*s", n, p);
 if (e == e_attmsg) {
 printf("\n");
 found = 1;
 }
 }
 }
 printf("\n");
 if (!found)
 printf("Listened too long! timing out...\n");
 return(found);

GlAPI

152 GlAPI Gallagher & Robertson

}

void echo_input(void)
{
 unsigned char *p;
 enclosure_t e;
 int n;
 int found = 0;

 while (!found) {
 n = line_get(&p, &e);
 printf("\n%.*s", n, p);
 if (e == e_attmsg) {
 printf("\n");
 found = 1;
 }
 if (e == e_group) {
 printf("\n...data received...");
 found = 1;
 if (line_our_turn()) {
 printf("turn received, data echoed...\n");
 line_put(p, n, e);
 }
 }
 }
}

int main(int argc, char **argv)
{
 int i;
 char inbuf[100];
 char **params;

 printf("***\n");
 printf("**** Listening GlAPI example, echos host reception ****\n");
 printf("***\n\n");

 if (argc <= 1) {
 printf("**** Error You must supply Gline parameter ****\n");
 return(1);
 }

 if (**(++argv) == '-') {
 params = argv;
 printf("**** using supplied parameters ****\n");
 }
 else {
 switch (**(argv)) {
 case '1':
 params = parameters1;
 printf("**** using parameters1 ****\n");
 break;
 case '2':
 params = parameters2;
 printf("**** using parameters2 ****\n");
 break;
 default:
 printf("**** Error, invalid parameter number ****\n");
 return(1);
 break;
 }
 }

 GlAPI

Gallagher & Robertson GlAPI 153

 if (!line_initialize("", 0, "")) {
 printf("**** Error initializing GlAPI ****\n");
 return(1);
 }

 while (*params) {
 printf("%s ", *params);
 if (line_init_params(*params) != 0) {
 fprintf(stderr, "%s\n", line_error);
 line_release();
 return(2);
 }
 params++;
 }
 printf("\n");
 if ((i = line_start()) != 0) {
 fprintf(stderr, "line_start return value = %d\n", i);
 fprintf(stderr, "%s\n", line_error);
 printf("**** ERROR ready to EXIT ?\n");
 gets(inbuf);
 line_release();
 return(2);
 }
 printf("**** Listening for host ****\n");

 if (wait_connection()) {
 line_put(welcome, strlen(welcome), e_group);

 while (line_connected())
 echo_input();
 }
 printf("**** Stopping the line interface ****\n");
 line_stop();
 line_release();

 printf("***\n");
 printf("**** Host Links GlAPI example terminating ****\n");
 printf("***\n\n");
 return 0;

}

/*--*/
/*----- END : apiserv -----*/
/*--*/

GlAPI

154 GlAPI Gallagher & Robertson

apiclnt.c: Client session

/*--

 apiclnt

 Purpose : Shows the use of Host Links GlAPI library to
 connect and handle one client session to apiserv

 Author : Phil Pilley, Gallagher & Robertson A/S Norway

--*/

#include <stdio.h>
#include <string.h>
#include "glapi.h"

/* In both examples, the connections from GlAPI are through a remote */
/* Ggate on the 'gars' Unix system. The syntax "-li DSA:gars" signifies */
/* That GlAPI will connect to Ggate on "gars", and use the Gline DSA */
/* module. */

/* In the below example, the -CO is the "connection name" configured at */
/* the Ggate level, in the gline config files. */

char *parameters1[] = {"-li", "dsa", "-dn", "phil",
 "-da", "apitest", "-t_", "-s_", NULL};

char *parameters2[] = {"-li", "dsa:gars", "-dn", "is2c",
 "-da", "apitest", NULL};

boolean wait_line_data_and_turn(void)
{
 unsigned char *p;
 enclosure_t e;
 int n;
 int found = 0;

 while (!found) {
 line_wait(1); /* wait an event for max 60 seconds */
 printf(".");
 if (line_input_available()) {
 n = line_get(&p, &e);
 printf("%.*s", n, p);
 if ((e == e_attmsg) || (e == e_group)) {
 printf("\n");
 found = 1;
 }
 }
 }
 return(line_connected());
}

void wait_connection(void)
{
 unsigned char *p;
 enclosure_t e;
 int n;
 int found = 0;

 GlAPI

Gallagher & Robertson GlAPI 155

 printf("Connecting...\n");
 while (!found) {
 line_wait(1); /* wait an event for max 1 seconds */
 printf(".");
 if (line_input_available()) {
 n = line_get(&p, &e);
 printf("\n%.*s", n, p);
 if (e == e_attmsg) {
 printf("\n");
 found = 1;
 }
 }
 }
 printf("\n");
}

void send_msg(char *message)
{
 int len;

 len = strlen(message);
 message[len] = '\r';
 message[++len] = '\0';

 line_put(message, len, e_group);
}

int main(int argc, char **argv)
{
 int i;
 char inbuf[100];
 char **params;

 printf("**\n");
 printf("**** Host Links GlAPI example connecting to one host ***\n");
 printf("**\n\n");

 if (argc <= 1) {
 printf("**** Error You must supply Gline paramerer ****\n");
 return(1);
 }

 if (**(++argv) == '-') {
 params = argv;
 printf("**** using supplied parameters ****\n");
 }
 else {
 switch (**(argv)) {
 case '1':
 params = parameters1;
 printf("**** using parameters1 ****\n");
 break;
 case '2':
 params = parameters2;
 printf("**** using parameters2 ****\n");
 break;
 default:
 printf("**** Error, invalid parameter number ****\n");
 return(1);
 }
 }

GlAPI

156 GlAPI Gallagher & Robertson

 if (!line_initialize("", 0, "")) {
 printf("**** Error initializing GlAPI ****\n");
 return(1);
 }

 while (*params) {
 printf("%s ", *params);
 if (line_init_params(*params) != 0) {
 fprintf(stderr, "%s\n", line_error);
 line_release();
 return(2);
 }
 params++;
 }
 printf("\n");
 if ((i = line_start()) != 0) {
 fprintf(stderr, "line_start return value = %d\n", i);
 fprintf(stderr, "%s\n", line_error);
 printf("**** ERROR ready to EXIT ?\n");
 gets(inbuf);
 line_release();
 return(2);
 }
 printf("**** Connecting to host ****\n");
 line_put("$*$CN ", 6, e_group);

 wait_connection();

 printf("**** To exit, type QUIT ****\n");

 while (line_connected()) {
 if (wait_line_data_and_turn()) {
 inbuf[0] = '\0';
 if ((gets(inbuf) == (char *)NULL) ||
 !strcmp(inbuf, "quit") ||
 !strcmp(inbuf, "QUIT")) {
 break; /* asked to terminate */
 }
 send_msg(inbuf);
 }
 }
 printf("**** Stopping the line interface ****\n");
 line_stop();
 line_release();
 printf("**\n");
 printf("**** Host Links GlAPI example terminating ****\n");
 printf("**\n\n");
 return 0;

}

/*--*/
/*----- END : apiclnt -----*/
/*--*/

 GlAPI

Gallagher & Robertson GlAPI 157

glapitst.pl: Perl example
use Glapi;

Perl example that connects to the G&R Web server and displays the first
page

Initialization
Glapi::Initialize("", 0, "") || die;
Glapi::Parameter("-li", "tcp");

Start the line module
$lid = Glapi::Start();

Connect to the host
Glapi::Put("\$*\$CN www.gar.no:80", 0, $Glapi::e_group);

Glapi::Wait(15);
while (Glapi::Input_available()) {
 # Get rid of the connect message
 ($buffer,$enc) = Glapi::Get();
 }

Were we connected?
if (!Glapi::Connected()) {
 print "Oops - not connected.\n";
 Glapi::Stop();
 exit;
 }

Request the top page from the www.gar.no web server
Glapi::Put("GET / HTTP/1.0\r\n\r\n", 0, $Glapi::e_group);

Display the result from the web server
$go = Glapi::Wait(15);
while ($go == $lid) {
 while (Glapi::Input_available()) {
 ($buffer,$enc) = Glapi::Get();
 print "$buffer\n" if ($enc < $Glapi::e_attmsg);
 }
 if ($enc == 6 && !Glapi::Connected()) {
 $go = -1;
 }
 else {
 $go = Glapi::Wait(15);
 }
 }

Deallocate resources and stop the line module
Glapi::Release();
Glapi::Stop();

GlAPI

158 GlAPI Gallagher & Robertson

 GlAPI

Gallagher & Robertson GlAPI 159

Sample CPI-C API programs

cpicline.c: Connection to TSS on
GCOS8

/*--

 cpicline

 Purpose : Show the use of Host Links Linehandler
 CPI-C library

 Author : Michael Sandoy, Gallagher & Robertson A/S Norway

 Last changes: Phil Pilley, G&R A/S, 15 Apr 1997
 Changes for:
 - Windows compatibility
 - added new CPI-C api functions
 - used READABLE_MACROS
--*/

#include <stdio.h>
#include <string.h>
#include "cpic.h"

CONVERSATION_ID conv_id;
unsigned char inpbuf[6144];
unsigned char outbuf[160];
unsigned char node[16] = "tssdps5";
CM_INT32 retcode;
CM_INT32 inplen = 6144;
CM_INT32 sndlen = 2;
CM_INT32 reclen = 0;
CM_INT32 datarec;
CM_INT32 status;
CM_INT32 rts;
CM_INT32 sndtyp = CM_SEND_AND_PREP_TO_RECEIVE;
CM_INT32 dealtyp = CM_DEALLOCATE_ABEND;
CM_INT32 initial_send_state = 1;
extern char *api_msg(int, char *);

void display_buffer(unsigned char *buf, CM_INT32 len)
{
 int itest;
/*
 * fprintf(stderr,
 * "G&R CPI-C testprogram received len=%d status=%d\n",
 * reclen, status);
 *
 * Hexadecimal format if anyone wants it?
 * itest = 0;

GlAPI

160 GlAPI Gallagher & Robertson

 * fprintf(stderr, "Hexadecimal format\n");
 * while (itest < len) {
 * fprintf(stderr, "0x%02x ", (unsigned char) buf[itest]);
 * if ((++itest % 16) == 0)
 * fprintf(stderr, "\n");
 * }
 * if ((itest % 16) != 0)
 * fprintf(stderr, "\n");
 *
 * fprintf(stderr, "Character format\n");
 */
 itest = 0;
 while (itest < len) {
 fprintf(stderr, "%c", buf[itest]);
 itest++;
 }
 fprintf(stderr, "\n");
}

void send_disconnect(void)
{
 if (status != CM_DEALLOCATED_ABEND) {
 /* set deallocate type to be CM_DEALLOCATE_ABEND */
 /* to force disconnect */
 Set_Deallocate_Type(conv_id, &dealtyp, &retcode);
 Deallocate(conv_id, &retcode);
 fprintf(stderr,
 "Deallocate done conv_id=%.8s api_msg=%s\n",
 conv_id, api_msg(retcode, "dummy"));
 }
#ifdef windows
 WinCPICCleanup();
 fprintf(stderr, "WinCPICCleanup done\n");
#endif
}

int receive_turn(void)
{
 status = CM_NO_STATUS_RECEIVED;
 while (status == CM_NO_STATUS_RECEIVED) {
 Receive(conv_id, inpbuf, &inplen, &datarec, &reclen,
 &status, &rts, &retcode);
 fprintf(stderr, "Receive done conv_id=%.8s api_msg=%s\n",
 conv_id, api_msg(retcode, "dummy"));
 display_buffer(inpbuf, reclen);
 if (retcode) {
 send_disconnect();
 return (-1);
 }
 }
 return (0);
}

int send_connect(void)
{
#ifdef windows
WORD wVer = 2;
WCPICDATA CPICData;

 if (WinCPICStartup(wVer, &CPICData) != 0)
 return (-1);
 fprintf(stderr, "CPICStartup done\n");
#endif

 GlAPI

Gallagher & Robertson GlAPI 161

 Initialize_Conversation(conv_id, node, &retcode);
 fprintf(stderr,
 "Initialize_Conversation done conv_id=%.8s api_msg=%s\n",
 conv_id, api_msg(retcode, "dummy"));
 if (retcode) {
 send_disconnect();
 return (-1);
 }

 /* after cmallc, the default state is CM_SEND, by default G&R */
 /* CPI-C will flush any incoming logon data from the host until */
 /* the turn is received */
 Allocate(conv_id, &retcode);
 fprintf(stderr, "Allocate done conv_id=%.8s api_msg=%s\n",
 conv_id, api_msg(retcode, "dummy"));
 if (retcode) {
 send_disconnect();
 return (-1);
 }

 /* set send type to be CM_SEND_AND_PREP_TO_RECEIVE, */
 /* (send with group) */
 Set_Send_Type(conv_id, &sndtyp, &retcode);

 /* if -SND OFF in cpic.cfg, then we must read in the host */
 /* logon banner */
 if (!initial_send_state)
 return (receive_turn());

 return (0);
}

int send_break(void)
{
 Send_Error(conv_id, &rts, &retcode);
 fprintf(stderr,
 "Send_Error in SEND State done conv_id=%.8s api_msg=%s\n",
 conv_id, api_msg(retcode, "dummy"));
 if (retcode) {
 send_disconnect();
 return (-1);
 }

 return (receive_turn());
}

int send_wait_for_answer(unsigned char *msg)
{
 strcpy(outbuf, msg);
 sndlen = strlen(msg);
 Send_Data(conv_id, outbuf, &sndlen, &rts, &retcode);
 fprintf(stderr, "Send_Data done conv_id=%.8s api_msg=%s\n",
 conv_id, api_msg(retcode, "dummy"));
 display_buffer(outbuf, sndlen);

 return (receive_turn());
}

int send_then_break_wait_for_answer(unsigned char *msg)
{
 strcpy(outbuf, msg);
 sndlen = strlen(msg);
 Send_Data(conv_id, outbuf, &sndlen, &rts, &retcode);
 fprintf(stderr, "Send_Data done conv_id=%.8s api_msg=%s\n",

GlAPI

162 GlAPI Gallagher & Robertson

 conv_id, api_msg(retcode, "dummy"));
 display_buffer(outbuf, sndlen);

 Send_Error(conv_id, &rts, &retcode);
 fprintf(stderr,
 "Send_Error in RECV State done conv_id=%.8s api_msg=%s\n",
 conv_id, api_msg(retcode, "dummy"));

 return (receive_turn());
}

int main(void)
{
 /* Connect to TSS on GCOS8 system, parameters in "node tssdps5" */
 /* section of cpic.cfg */

 if (send_connect())
 return (-1);

 /* Send logon data as if logon screen has been filled in */

 if (send_wait_for_answer("account\tpassword"))
 return (-1);

 /* Execute List working directory command and read response */

 if (send_wait_for_answer("LWD"))
 return (-1);

 /* Execute List files in current directory command, read response */

 if (send_wait_for_answer("cata,s,a"))
 return (-1);

 /* Execute List file "mstull" command and read response */

 if (send_wait_for_answer("list myfile"))
 return (-1);

 /* Send BREAK and read response */

 if (send_break())
 return (-1);

 /* Execute List file "mstull" command, send BREAK, read response */

 if (send_then_break_wait_for_answer("list myfile"))
 return (-1);

 /* Execute Log out command and read response */

 if (send_wait_for_answer("bye"))
 return (0);

 /* normal return code here as we'll get disconnected with "bye" */

 /* probably won't get here as I was probably disconnected in the */
 /* receive_turn() and in RESET state but if not, then disconnect */

 send_disconnect();

 return (0);
}

 GlAPI

Gallagher & Robertson GlAPI 163

cpicserv.c: Server session

/*--

 cpicserv

 Purpose : Show the use of Host Links Linehandler
 CPI-C library incoming connection from a
 CPI-C client (cpicclnt.c).

 Author : Phil Pilley, G&R A/S, 15 Apr 1997

--*/

#include <stdio.h>
#include <string.h>
#include "cpic.h"

CONVERSATION_ID conv_id;
unsigned char inpbuf[6144];
unsigned char outbuf[160];
unsigned char echobuf[6144];
CM_INT32 retcode;
CM_INT32 inplen = 6144;
CM_INT32 sndlen = 2;
CM_INT32 reclen = 0;
CM_INT32 datarec;
CM_INT32 status;
CM_INT32 rts;
CM_INT32 rcv_state_after_allc = 0;
CM_INT32 sndtyp;
CM_INT32 dealtyp = CM_DEALLOCATE_ABEND;
extern char *api_msg(int, char *);

/**/
/* This example requires the following in the cpic.cfg */
/**/
/* Default */
/* -li dsa */
/* * or */
/* * -li dsa:ggate_ipaddr */
/* */
/* node clnt */
/* -ln node */
/* -mn cpicserv */
/* */
/* node serv */
/* -dn node */
/* -da cpicserv */
/**/
/* NOTE that the cpicserv.c sets the "-mn" "cpicserv" in*/
/* TP_name, and will get the -ln in the cpic_cfg_name. */
/**/

void setup_side_info(char *cpic_cfg_name)
{
SIDE_INFO side_info;
CM_INT32 len;

 memset(&side_info, 0, sizeof(side_info));

GlAPI

164 GlAPI Gallagher & Robertson

/* set name to look for in the cpic.cfg file */
 strncpy(side_info.sym_dest_name, cpic_cfg_name,
 sizeof(side_info.sym_dest_name));

 len = (CM_INT32) sizeof(side_info);
 Set_CPIC_Side_Information("", &side_info, &len, &retcode);
}

void display_input(char *inpbuf, CM_INT32 reclen, CM_INT32 status)
{
 int itest;

 fprintf(stderr,
 "\nG&R CPI-C testprogram receivedlen=%d status=%d\n",
 reclen, status);
/* Hexadecimal format if anyone wants it?
 * itest = 0;
 * fprintf(stderr, "\nHexadecimal format\n");
 * while (itest < reclen) {
 * fprintf(stderr, "0x%02x ", (unsigned char) inpbuf[itest]);
 * if ((++itest % 16) == 0)
 * fprintf(stderr, "\n");
 * }
 * if ((itest % 16) != 0)
 * fprintf(stderr, "\n");
 *
 * fprintf(stderr, "\nCharacter format\n");
 */
 itest = 0;
 while (itest < reclen) {
 fprintf(stderr, "%c", inpbuf[itest]);
 itest++;
 }
}

int send_disconnect(void)
{
 if (retcode == CM_DEALLOCATED_ABEND)
 fprintf(stderr, "\nCPIC conversation deallocated by peer\n");
 else {
 Set_Deallocate_Type(conv_id, &dealtyp, &retcode);
 Deallocate(conv_id, &retcode);
 fprintf(stderr, "\nCMDEAL done conv_id=%.8s api_msg=%s\n",
 conv_id, api_msg(retcode, "dummy"));
 }

#ifdef windows
 WinCPICCleanup();
 fprintf(stderr, "WinCPICCleanup done\n");
#endif

 return(0);
}

int wait_for_answer(char *msg)
{
int found = 0;

 if (!msg || *msg == '\0')
 return(0);

 status = CM_NO_STATUS_RECEIVED; /* must wait for the turn */
 while (!found && status == CM_NO_STATUS_RECEIVED) {

 GlAPI

Gallagher & Robertson GlAPI 165

 fprintf(stderr, "\nwaiting for: %s", msg);
 Receive(conv_id, inpbuf, &inplen, &datarec, &reclen,
 &status, &rts, &retcode);
 fprintf(stderr, "\nCMRCV done conv_id=%.8s api_msg=%s",
 conv_id, api_msg(retcode, "dummy"));
 display_input(inpbuf, reclen, status);
 if (retcode != CM_OK) {
 send_disconnect();
 return (-1);
 }
 if (reclen != 0) {
 inpbuf[reclen] = '\0';
 if (!msg || !*msg || strstr(inpbuf, msg))
 found++;
 }
 }
 return (0);
}

int listen_wait(char *cpicnode, char *waitfor)
{
#ifdef windows
WORD wVer = 2;
WCPICDATA CPICData;

 if (WinCPICStartup(wVer, &CPICData) != 0)
 return (-1);
 fprintf(stderr, "\nCPICStartup done\n");
#endif

 setup_side_info(cpicnode);

 Accept_Conversation(conv_id, &retcode);
 fprintf(stderr, "\nCMACCP done conv_id=%.8s api_msg=%s",
 conv_id, api_msg(retcode, "dummy"));
 if (retcode) {
 return (-1);
 }
 return(wait_for_answer(waitfor));
}

int send_break(void)
{
 Send_Error(conv_id, &rts, &retcode);
 fprintf(stderr,
 "\nCMSERR in SEND State done conv_id=%.8s api_msg=%s",
 conv_id, api_msg(retcode, "dummy"));
 if (retcode) {
 send_disconnect();
 return (-1);
 }
 return(wait_for_answer(""));
}

int send_wait_for_answer(char *msg, char *waitfor)
{
 sndtyp = CM_SEND_AND_PREP_TO_RECEIVE;
 Set_Send_Type(conv_id, &sndtyp, &retcode);

 strcpy(outbuf, msg);
 sndlen = strlen(msg);
 fprintf(stderr, "\nsending: %s", msg);
 Send_Data(conv_id, outbuf, &sndlen, &rts, &retcode);

GlAPI

166 GlAPI Gallagher & Robertson

 fprintf(stderr, "\nCMSEND done conv_id=%.8s api_msg=%s",
 conv_id, api_msg(retcode, "dummy"));
 if (retcode) {
 send_disconnect();
 return (-1);
 }
 return(wait_for_answer(waitfor));
}

int multi_send_wait_for_answer(char *waitfor)
{
char org_msg[21] = "01234567890123456789";
char msg[11];
int i = 0;

 while (i < 10) {
 sndtyp = (i == 9) ? CM_SEND_AND_PREP_TO_RECEIVE :
 CM_BUFFER_DATA;
 Set_Send_Type(conv_id, &sndtyp, &retcode);

 memcpy(msg, &org_msg[i], 10);
 msg[10] = '\0';
 strcpy(outbuf, msg);
 sndlen = strlen(msg);
 fprintf(stderr, "\nsending: %s", msg);
 Send_Data(conv_id, outbuf, &sndlen, &rts, &retcode);

 fprintf(stderr, "\nCMSEND done conv_id=%.8s api_msg=%s",
 conv_id, api_msg(retcode, "dummy"));
 if (retcode) {
 send_disconnect();
 return (-1);
 }
 i++;
 }
 return(wait_for_answer(waitfor));
}

int send_then_break_wait_for_answer(char *msg, char *waitfor)
{
 sndtyp = CM_SEND_AND_PREP_TO_RECEIVE;
 Set_Send_Type(conv_id, &sndtyp, &retcode);

 strcpy(outbuf, msg);
 sndlen = strlen(msg);
 fprintf(stderr, "\nsending: %s", msg);
 Send_Data(conv_id, outbuf, &sndlen, &rts, &retcode);

 fprintf(stderr, "\nCMSEND done conv_id=%.8s api_msg=%s",
 conv_id, api_msg(retcode, "dummy"));
 Send_Error(conv_id, &rts, &retcode);
 fprintf(stderr,
 "\nCMSERR in RECV State done conv_id=%.8s api_msg=%s",
 conv_id, api_msg(retcode, "dummy"));
 if (retcode) {
 send_disconnect();
 return (-1);
 }
 return(wait_for_answer(waitfor));
}

void cpicserv(char *cpicnode)
{

 GlAPI

Gallagher & Robertson GlAPI 167

 if (listen_wait(cpicnode, "CPICCLNT calling") == -1)
 return;

 if (send_wait_for_answer("CPICSERV replying", "hello") == -1)
 return;

 if (send_wait_for_answer("thanks", "012345") == -1)
 return;

 if (multi_send_wait_for_answer("finished") == -1)
 return;

 if (send_wait_for_answer("I've also finished", "nothing") == -1)
 return;

 send_disconnect();

 return;
}

int main(int argc, char **argv)
{
char *cpicnode;

 if (argc >= 2)
 cpicnode = *(++argv);
 else
 cpicnode = "clnt";

 cpicserv(cpicnode);

 return 0;
}

GlAPI

168 GlAPI Gallagher & Robertson

cpicclnt.c: Client session

/*--

 cpicclnt

 Purpose : Show the use of Host Links Linehandler
 CPI-C library outgoing connection to a
 CPI-C server (cpicserv.c)

 Author : Phil Pilley, G&R A/S, 15 Apr 1997

--*/

#include <stdio.h>
#include <string.h>
#include "cpic.h"

CONVERSATION_ID conv_id;
unsigned char inpbuf[6144];
unsigned char outbuf[160];
CM_INT32 retcode;
CM_INT32 inplen = 6144;
CM_INT32 sndlen = 2;
CM_INT32 reclen = 0;
CM_INT32 datarec;
CM_INT32 status;
CM_INT32 rts;
CM_INT32 rcv_state_after_allc = 0;
CM_INT32 sndtyp;
CM_INT32 dealtyp = CM_DEALLOCATE_ABEND;
CM_INT32 synclevel = CM_NONE;
unsigned char userid[10] = "user";
CM_INT32 userlen = 4;
unsigned char password[10] = "pass";
CM_INT32 passlen = 4;
extern char *api_msg(int, char *);

/**/
/* This example requires the following in the cpic.cfg */
/**/
/* Default */
/* -li dsa */
/* * or */
/* * -li dsa:ggate_ipaddr */
/* */
/* node clnt */
/* -ln node */
/* -mn cpicserv */
/* */
/* node serv */
/* -dn node */
/* -da cpicserv */
/**/
/* NOTE that the cpicclnt.c sets the "-da" "cpicserv" in*/
/* TP_name, and will get the -dn in the cpic_cfg_name. */
/**/

 GlAPI

Gallagher & Robertson GlAPI 169

void display_input(char *inpbuf, CM_INT32 reclen, CM_INT32 status)
{
 int itest;

 fprintf(stderr,
 "\nG&R CPI-C testprogram receivedlen=%d status=%d\n",
 reclen, status);
/* Hexadecimal format if anyone wants it?
 * itest = 0;
 * fprintf(stderr, "\nHexadecimal format\n");
 * while (itest < reclen) {
 * fprintf(stderr, "0x%02x ", (unsigned char) inpbuf[itest]);
 * if ((++itest % 16) == 0)
 * fprintf(stderr, "\n");
 * }
 * if ((itest % 16) != 0)
 * fprintf(stderr, "\n");
 *
 * fprintf(stderr, "\nCharacter format\n");
 */
 itest = 0;
 while (itest < reclen) {
 fprintf(stderr, "%c", inpbuf[itest]);
 itest++;
 }
}

int send_disconnect(void)
{
 Set_Deallocate_Type(conv_id, &dealtyp, &retcode);
 Deallocate(conv_id, &retcode);
 fprintf(stderr, "\nCMDEAL done conv_id=%.8s api_msg=%s\n",
 conv_id, api_msg(retcode, "dummy"));

#ifdef windows
 WinCPICCleanup();
 fprintf(stderr, "WinCPICCleanup done\n");
#endif

 return(0);
}

int wait_for_answer(char *msg)
{
int found = 0;

 if (!msg || *msg == '\0')
 return(0);

 status = CM_NO_STATUS_RECEIVED; /* must wait for the turn */
 while (!found && status == CM_NO_STATUS_RECEIVED) {
 fprintf(stderr, "\nwaiting for: %s", msg);
 Receive(conv_id, inpbuf, &inplen, &datarec, &reclen,
 &status, &rts, &retcode);
 fprintf(stderr,
 "\nCMRCV done reclen=%d conv_id=%.8s api_msg=%s",
 reclen, conv_id, api_msg(retcode, "dummy"));
 display_input(inpbuf, reclen, status);
 if (retcode != CM_OK) {
 send_disconnect();
 return (-1);
 }
 if (reclen != 0) {
 inpbuf[reclen] = '\0';

GlAPI

170 GlAPI Gallagher & Robertson

 if (!msg || !*msg || strstr(inpbuf, msg))
 found++;
 }
 }
 return (0);
}

int send_connect(char *name, char *msg, char *waitfor)
{
#ifdef windows
WORD wVer = 2;
WCPICDATA CPICData;

 if (WinCPICStartup(wVer, &CPICData) != 0)
 return (-1);
 fprintf(stderr, "\nCPICStartup done\n");
#endif

 Initialize_Conversation(conv_id, name, &retcode);
 fprintf(stderr, "\nCMINIT done conv_id=%.8s api_msg=%s",
 conv_id, api_msg(retcode, "dummy"));
 if (retcode) {
 return (-1);
 }

 Allocate(conv_id, &retcode);
 fprintf(stderr, "\nCMALLC done conv_id=%.8s api_msg=%s",
 conv_id, api_msg(retcode, "dummy"));
 if (retcode) {
 send_disconnect();
 return (-1);
 }
 sndtyp = CM_SEND_AND_PREP_TO_RECEIVE;
 Set_Send_Type(conv_id, &sndtyp, &retcode);

 strcpy(outbuf, msg);
 sndlen = strlen(msg);
 fprintf(stderr, "\nsending: %s", msg);
 Send_Data(conv_id, outbuf, &sndlen, &rts, &retcode);

 fprintf(stderr, "\nCMSEND done conv_id=%.8s api_msg=%s",
 conv_id, api_msg(retcode, "dummy"));
 if (retcode) {
 send_disconnect();
 return (-1);
 }
 return(wait_for_answer(waitfor));
}

int send_break(void)
{
 Send_Error(conv_id, &rts, &retcode);
 fprintf(stderr,
 "\nCMSERR in SEND State done conv_id=%.8s api_msg=%s",
 conv_id, api_msg(retcode, "dummy"));
 if (retcode) {
 send_disconnect();
 return (-1);
 }
 return(wait_for_answer(""));
}

int send_wait_for_answer(char *msg, char *waitfor)
{

 GlAPI

Gallagher & Robertson GlAPI 171

 sndtyp = CM_SEND_AND_PREP_TO_RECEIVE;
 Set_Send_Type(conv_id, &sndtyp, &retcode);

 strcpy(outbuf, msg);
 sndlen = strlen(msg);
 fprintf(stderr, "\nsending: %s", msg);
 Send_Data(conv_id, outbuf, &sndlen, &rts, &retcode);

 fprintf(stderr, "\nCMSEND done conv_id=%.8s api_msg=%s",
 conv_id, api_msg(retcode, "dummy"));
 if (retcode) {
 send_disconnect();
 return (-1);
 }
 return(wait_for_answer(waitfor));
}

int multi_send_wait_for_answer(char *waitfor)
{
char org_msg[21] = "01234567890123456789";
char msg[11];
int i = 0;

 while (i < 10) {
 sndtyp = (i == 9) ? CM_SEND_AND_PREP_TO_RECEIVE :
 CM_BUFFER_DATA;
 Set_Send_Type(conv_id, &sndtyp, &retcode);

 memcpy(msg, &org_msg[i], 10);
 msg[10] = '\0';
 strcpy(outbuf, msg);
 sndlen = strlen(msg);
 fprintf(stderr, "\nsending: %s", msg);
 Send_Data(conv_id, outbuf, &sndlen, &rts, &retcode);

 fprintf(stderr, "\nCMSEND done conv_id=%.8s api_msg=%s",
 conv_id, api_msg(retcode, "dummy"));
 if (retcode) {
 send_disconnect();
 return (-1);
 }
 i++;
 }
 return(wait_for_answer(waitfor));
}

int send_then_break_wait_for_answer(char *msg, char *waitfor)
{
 sndtyp = CM_SEND_AND_PREP_TO_RECEIVE;
 Set_Send_Type(conv_id, &sndtyp, &retcode);

 strcpy(outbuf, msg);
 sndlen = strlen(msg);
 fprintf(stderr, "\nsending: %s", msg);
 Send_Data(conv_id, outbuf, &sndlen, &rts, &retcode);

 fprintf(stderr, "\nCMSEND done conv_id=%.8s api_msg=%s",
 conv_id, api_msg(retcode, "dummy"));
 Send_Error(conv_id, &rts, &retcode);
 fprintf(stderr,
 "\nCMSERR in RECV State done conv_id=%.8s api_msg=%s",
 conv_id, api_msg(retcode, "dummy"));
 if (retcode) {
 send_disconnect();

GlAPI

172 GlAPI Gallagher & Robertson

 return (-1);
 }
 return(wait_for_answer(waitfor));
}

void cpicclnt(char *cpicnode)
{
 if (send_connect(cpicnode, "CPICCLNT calling\r",
 "CPICSERV replying") == -1)
 return;

 if (send_wait_for_answer("hello", "thanks") == -1)
 return;

 if (multi_send_wait_for_answer("012345") == -1)
 return;

 if (send_wait_for_answer("I'm finished", "finished") == -1)
 return;

 send_disconnect();

 return;
}

int main(int argc, char **argv)
{
char *cpicnode;

 if (argc >= 2)
 cpicnode = *(++argv);
 else
 cpicnode = "serv";

 cpicclnt(cpicnode);

 return 0;
}

 GlAPI

Gallagher & Robertson GlAPI 173

Sample CPI-C 3270 API
programs

cpictest.c: Connection to IBM host

/*--

 cpictest

 Purpose : Show the use of Host Links CPI-C 3270 library

 Author : Michael Sandoy, Gallagher & Robertson A/S Norway

--*/

#include <stdio.h>
#include <string.h>
#include "cpic.h"

CONVERSATION_ID conv_id;
char inpbuf[1920];
char outbuf[160];
char node[16] = "tcpibm";
int retcode;
int inplen = 1920;
int sndlen = 2;
int reclen = 0;
int datarec;
int status;
int rts;
int rcv_state_after_allc = 0;

void display_input(hexdisplay, inpbuf, reclen, status)
int hexdisplay;
char *inpbuf;
int reclen;
int status;
{
 int itest;

 itest = 0;
 fprintf(stderr,
 "\nCPI-C testprogram received len=%d status=%d\n",
 reclen, status);
 if (hexdisplay) {
 while (itest < reclen) {
 fprintf(stderr, "0x%02x ", inpbuf[itest]);
 if ((++itest % 16) == 0)

GlAPI

174 GlAPI Gallagher & Robertson

 fprintf(stderr, "\n");
 }
 if ((itest % 16) != 0)
 fprintf(stderr, "\n");
 }
 else {
 while (itest < reclen) {
 fprintf(stderr, "%c", inpbuf[itest]);
 if ((++itest % 80) == 0)
 fprintf(stderr, "\n");
 }
 if ((itest % 80) != 0)
 fprintf(stderr, "\n");
 }

}

void disconnect()
{
 cmdeal(conv_id, &retcode);
 fprintf(stderr,
 "\ncmdeal done conv_id=%s retcode=%d\n",
 conv_id, retcode);
}

int connect()
{

 cminit(conv_id, node, &retcode);
 fprintf(stderr, "\ncminit done conv_id=%s retcode=%d",
 conv_id, retcode);
 if (retcode) {
 disconnect();
 return (-1);
 }

 cmallc(conv_id, &retcode);
 fprintf(stderr,
 "\ncmallc done conv_id=%s retcode=%d",
 conv_id, retcode);
 if (retcode) {
 disconnect();
 return (-1);
 }

 if (rcv_state_after_allc) {
 cmrcv(conv_id, inpbuf, &inplen, &datarec, &reclen,
 &status, &rts, &retcode);
 fprintf(stderr, "\ncmrcv done conv_id=%s retcode=%d",
 conv_id, retcode);
 display_input(0, inpbuf, reclen, status);
 if (retcode) {
 disconnect();
 return (-1);
 }
 }
 return (0);
}

int send_wait_for_answer(msg)
char *msg;
{
 strcpy(outbuf, msg);
 sndlen = strlen(msg);

 GlAPI

Gallagher & Robertson GlAPI 175

 cmsend(conv_id, outbuf, &sndlen, &rts, &retcode);
 fprintf(stderr, "\ncmsend done conv_id=%s retcode=%d",
 conv_id, retcode);
 cmrcv(conv_id, inpbuf, &inplen, &datarec, &reclen,
 &status, &rts, &retcode);
 fprintf(stderr, "\ncmrcv done conv_id=%s retcode=%d",
 conv_id, retcode);
 display_input(0, inpbuf, reclen, status);
 if (retcode) {
 disconnect();
 return (-1);
 }
 return (0);
}

int main()
{
 if (connect())
 return 1;
 if (send_wait_for_answer("1@E"))
 return 1;
 if (send_wait_for_answer("userid@Tpassword@E"))
 return 1;
 if (send_wait_for_answer("@b")) /*PF11 */
 return 1;
 if (send_wait_for_answer("@c")) /*PF12 */
 return 1;
 disconnect();
 return 0;
}

GlAPI

176 GlAPI Gallagher & Robertson

cpictst.pl: Perl example
use Cpic3270;

This example requires the following lines in the cpic.cfg configuration
file:
host locis
-li tcp
-ho locis.loc.gov
-am tn3270
-user
-snd off
-rw 20

Initializing connection with LOCIS
$host = "locis";
($cid, $rc) = cpic3270::Initialize_Conversation ($host);
die if ($rc);

print "Connecting to $host...\n";
$rc = cpic3270::Allocate ($cid);
die if ($rc);

Receive the first screen from Locis
($buffer, $dr, $status, $rts, $rc) = cpic3270::Receive ($cid);
print "Receive status: $rc, dr=$dr, status=$status, rts=$rts, rcvlen=",
length($buffer),", buffer:\n, $buffer\n";

print "Requesting copyright information...\n";
Ask for option 1 on the screen (Copyright information)
$rc = cpic3270::Send ($cid, "1\@E", 0, $rts);
die if ($rc);

Receive the copyright info...
($buffer, $dr, $status, $rts, $rc) = cpic3270::Receive ($cid);
print "$buffer";

cpic3270::Deallocate ($cid);

 GlAPI

Gallagher & Robertson GlAPI 177

Sample CPI-C 5250 API
programs

cpictest.c: Connection to IBM host

/*--

 cpictest

 Purpose : Show the use of Host Links CPI-C 3270 library

 Author : Michael Sandoy, Gallagher & Robertson A/S Norway

--*/

#include <stdio.h>
#include <string.h>
#include "cpic.h"

CONVERSATION_ID conv_id;
char inpbuf[1920];
char outbuf[160];
char node[16] = "tcpibm";
int retcode;
int inplen = 1920;
int sndlen = 2;
int reclen = 0;
int datarec;
int status;
int rts;
int rcv_state_after_allc = 0;

void display_input(hexdisplay, inpbuf, reclen, status)
int hexdisplay;
char *inpbuf;
int reclen;
int status;
{
 int itest;

 itest = 0;
 fprintf(stderr,
 "\nCPI-C testprogram received len=%d status=%d\n",
 reclen, status);
 if (hexdisplay) {
 while (itest < reclen) {
 fprintf(stderr, "0x%02x ", inpbuf[itest]);
 if ((++itest % 16) == 0)

GlAPI

178 GlAPI Gallagher & Robertson

 fprintf(stderr, "\n");
 }
 if ((itest % 16) != 0)
 fprintf(stderr, "\n");
 }
 else {
 while (itest < reclen) {
 fprintf(stderr, "%c", inpbuf[itest]);
 if ((++itest % 80) == 0)
 fprintf(stderr, "\n");
 }
 if ((itest % 80) != 0)
 fprintf(stderr, "\n");
 }

}

void disconnect()
{
 cmdeal(conv_id, &retcode);
 fprintf(stderr,
 "\ncmdeal done conv_id=%s retcode=%d\n",
 conv_id, retcode);
}

int connect()
{

 cminit(conv_id, node, &retcode);
 fprintf(stderr, "\ncminit done conv_id=%s retcode=%d",
 conv_id, retcode);
 if (retcode) {
 disconnect();
 return (-1);
 }

 cmallc(conv_id, &retcode);
 fprintf(stderr,
 "\ncmallc done conv_id=%s retcode=%d",
 conv_id, retcode);
 if (retcode) {
 disconnect();
 return (-1);
 }

 if (rcv_state_after_allc) {
 cmrcv(conv_id, inpbuf, &inplen, &datarec, &reclen,
 &status, &rts, &retcode);
 fprintf(stderr, "\ncmrcv done conv_id=%s retcode=%d",
 conv_id, retcode);
 display_input(0, inpbuf, reclen, status);
 if (retcode) {
 disconnect();
 return (-1);
 }
 }
 return (0);
}

int send_wait_for_answer(msg)
char *msg;
{
 strcpy(outbuf, msg);
 sndlen = strlen(msg);

 GlAPI

Gallagher & Robertson GlAPI 179

 cmsend(conv_id, outbuf, &sndlen, &rts, &retcode);
 fprintf(stderr, "\ncmsend done conv_id=%s retcode=%d",
 conv_id, retcode);
 cmrcv(conv_id, inpbuf, &inplen, &datarec, &reclen,
 &status, &rts, &retcode);
 fprintf(stderr, "\ncmrcv done conv_id=%s retcode=%d",
 conv_id, retcode);
 display_input(0, inpbuf, reclen, status);
 if (retcode) {
 disconnect();
 return (-1);
 }
 return (0);
}

int main()
{
 if (connect())
 return 1;
 if (send_wait_for_answer("1@E"))
 return 1;
 if (send_wait_for_answer("userid@Tpassword@E"))
 return 1;
 if (send_wait_for_answer("@b")) /*PF11 */
 return 1;
 if (send_wait_for_answer("@c")) /*PF12 */
 return 1;
 disconnect();
 return 0;
}

GlAPI

180 GlAPI Gallagher & Robertson

cpictst.pl: Perl example
use Cpic3270;

This example requires the following lines in the cpic.cfg configuration
file:
host locis
-li tcp
-ho locis.loc.gov
-am tn3270
-user
-snd off
-rw 20

Initializing connection with LOCIS
$host = "locis";
($cid, $rc) = cpic3270::Initialize_Conversation ($host);
die if ($rc);

print "Connecting to $host...\n";
$rc = cpic3270::Allocate ($cid);
die if ($rc);

Receive the first screen from Locis
($buffer, $dr, $status, $rts, $rc) = cpic3270::Receive ($cid);
print "Receive status: $rc, dr=$dr, status=$status, rts=$rts, rcvlen=",
length($buffer),", buffer:\n, $buffer\n";

print "Requesting copyright information...\n";
Ask for option 1 on the screen (Copyright information)
$rc = cpic3270::Send ($cid, "1\@E", 0, $rts);
die if ($rc);

Receive the copyright info...
($buffer, $dr, $status, $rts, $rc) = cpic3270::Receive ($cid);
print "$buffer";

cpic3270::Deallocate ($cid);

 GlAPI

Gallagher & Robertson GlAPI 181

Sample CPI-C DKU API
programs

dkuiof.c: Connection to IOF on GCOS7
host

/*--

 dkucpic

 Purpose : Show the use of Host Links CPI-C DKU library

 Author : Michael Sandoy, Gallagher & Robertson A/S Norway

--*/

#include <stdio.h>
#include <string.h>
#include "cpic.h"

CONVERSATION_ID conv_id;
char inpbuf[1920];
char outbuf[160];
char node[16] = "iofen06";
int retcode;
int inplen = 1920;
int sndlen = 2;
int reclen = 0;
int datarec;
int status;
int rts;
int rcv_state_after_allc = 0;

void display_input(hexdisplay, inpbuf, reclen, status)
int hexdisplay;
char *inpbuf;
int reclen;
int status;
{
 int itest;

 itest = 0;
 fprintf(stderr, "\nCPI-C testprogram received len=%d status=%d\n",
 reclen, status);
 if (hexdisplay) {
 while (itest < reclen) {

GlAPI

182 GlAPI Gallagher & Robertson

 fprintf(stderr, "0x%02x ", inpbuf[itest]);
 if ((++itest % 16) == 0)
 fprintf(stderr, "\n");
 }
 if ((itest % 16) != 0)
 fprintf(stderr, "\n");
 }
 else {
 while (itest < reclen) {
 fprintf(stderr, "%c", inpbuf[itest]);
 if ((++itest % 80) == 0)
 fprintf(stderr, "\n");
 }
 if ((itest % 80) != 0)
 fprintf(stderr, "\n");
 }

}

void disconnect()
{
 cmdeal(conv_id, &retcode);
 fprintf(stderr, "\ncmdeal done conv_id=%s retcode=%d\n", conv_id,
retcode);
}

int connect()
{
 cminit(conv_id, node, &retcode);
 fprintf(stderr, "\ncminit done conv_id=%s retcode=%d", conv_id, retcode);
 if (retcode) {
 disconnect();
 return (-1);
 }

 cmallc(conv_id, &retcode);
 fprintf(stderr, "\ncmallc done conv_id=%s retcode=%d", conv_id, retcode);
 if (retcode) {
 disconnect();
 return (-1);
 }

 if (rcv_state_after_allc) {
 cmrcv(conv_id, inpbuf, &inplen, &datarec, &reclen, &status, &rts,
 &retcode);
 fprintf(stderr, "\ncmrcv done conv_id=%s retcode=%d", conv_id,
 retcode);
 display_input(0, inpbuf, reclen, status);
 if (retcode) {
 disconnect();
 return (-1);
 }
 }
 return (0);
}

int send_wait_for_answer(msg)
char *msg;
{
 strcpy(outbuf, msg);
 sndlen = strlen(msg);
 cmsend(conv_id, outbuf, &sndlen, &rts, &retcode);
 fprintf(stderr, "\ncmsend done conv_id=%s retcode=%d", conv_id, retcode);

 GlAPI

Gallagher & Robertson GlAPI 183

 cmrcv(conv_id, inpbuf, &inplen, &datarec, &reclen, &status, &rts,
&retcode);
 fprintf(stderr, "\ncmrcv done conv_id=%s retcode=%d", conv_id, retcode);
 display_input(0, inpbuf, reclen, status);
 if (retcode) {
 disconnect();
 return (-1);
 }
 return (0);
}

int main()
{
 if (connect())
 return 1;
 if (send_wait_for_answer("@E"))
 return 1;
 /*
 if (send_wait_for_answer("mp novice=1;@E"))
 return 1;
 */
 if (send_wait_for_answer("@E"))
 return 1;
 if (send_wait_for_answer("@E"))
 return 1;
 if (send_wait_for_answer("@Tmail;@E"))
 return 1;
 if (send_wait_for_answer("@E"))
 return 1;
 if (send_wait_for_answer("@Tbye;@E"))
 return 1;
 disconnect();
 return 0;
}

GlAPI

184 GlAPI Gallagher & Robertson

dkutss.c: Connection to TSS on GCOS8
host

/*--

 dkucpic

 Purpose : Show the use of Host Links CPI-C DKU library

 Author : Michael Sandoy, Gallagher & Robertson A/S Norway

--*/

#include <stdio.h>
#include <string.h>
#include "cpic.h"

CONVERSATION_ID conv_id;
char inpbuf[1920];
char outbuf[160];
char node[16] = "tssdps5";
int retcode;
int inplen = 1920;
int sndlen = 2;
int reclen = 0;
int datarec;
int status;
int rts;
int rcv_state_after_allc = 0;

void display_input(hexdisplay, inpbuf, reclen, status)
int hexdisplay;
char *inpbuf;
int reclen;
int status;
{
 int itest;

 itest = 0;
 fprintf(stderr, "\nCPI-C testprogram receivedl en=%d status=%d\n",
 reclen, status);
 if (hexdisplay) {
 while (itest < reclen) {
 fprintf(stderr, "0x%02x ", inpbuf[itest]);
 if ((++itest % 16) == 0)
 fprintf(stderr, "\n");
 }
 if ((itest % 16) != 0)
 fprintf(stderr, "\n");
 }
 else {
 while (itest < reclen) {
 fprintf(stderr, "%c", inpbuf[itest]);
 if ((++itest % 80) == 0)
 fprintf(stderr, "\n");
 }

 GlAPI

Gallagher & Robertson GlAPI 185

 if ((itest % 80) != 0)
 fprintf(stderr, "\n");
 }

}

void disconnect()
{
 cmdeal(conv_id, &retcode);
 fprintf(stderr, "\ncmdeal done conv_id=%s retcode=%d\n", conv_id,
retcode);
}

int connect()
{
 cminit(conv_id, node, &retcode);
 fprintf(stderr, "\ncminit done conv_id=%s retcode=%d", conv_id, retcode);
 if (retcode) {
 disconnect();
 return (-1);
 }

 cmallc(conv_id, &retcode);
 fprintf(stderr, "\ncmallc done conv_id=%s retcode=%d", conv_id, retcode);
 if (retcode) {
 disconnect();
 return (-1);
 }

 if (rcv_state_after_allc) {
 cmrcv(conv_id, inpbuf, &inplen, &datarec, &reclen, &status, &rts,
 &retcode);
 fprintf(stderr, "\ncmrcv done conv_id=%s retcode=%d", conv_id,
 retcode);
 display_input(0, inpbuf, reclen, status);
 if (retcode) {
 disconnect();
 return (-1);
 }
 }
 return (0);
}

int send_wait_for_answer(msg)
char *msg;
{
 strcpy(outbuf, msg);
 sndlen = strlen(msg);
 cmsend(conv_id, outbuf, &sndlen, &rts, &retcode);
 fprintf(stderr, "\ncmsend done conv_id=%s retcode=%d", conv_id, retcode);
 cmrcv(conv_id, inpbuf, &inplen, &datarec, &reclen, &status, &rts,
&retcode);
 fprintf(stderr, "\ncmrcv done conv_id=%s retcode=%d", conv_id, retcode);
 display_input(0, inpbuf, reclen, status);
 if (retcode) { disconnect(); return (-1); }
 return (0);
}

int main()
{
 if (connect())
 return 1;
 if (send_wait_for_answer("account@Tpassword@Tuserid@E"))
 return 1;

GlAPI

186 GlAPI Gallagher & Robertson

 if (send_wait_for_answer("LWD@E")) /*List working directory */
 return 1;
 if (send_wait_for_answer("cata,s,a@E")) /*List files */
 return 1;
 disconnect();
 return 0;
}

SimpleCpicCGI.pl: Simple procedural
Perl/CGI connection to GCOS 8 host

-*- Mode: Perl -*-
SimpleCpicCGI.pl --- Simple procedural Perl/CGI example
Author : bard@gar.no
Created On : Mon Jun 26 09:48:13 2000
Last Modified By: bard , bard@gar.no

#!/usr/local/bin/Perl

Search the current directory for Perl modules

BEGIN {unshift(@INC,".")};

load the Cpic7800 Perl module

use Cpic7800;

Assign distributor country and number to 1st and 2nd command line args
respectively

$countryCode = $ARGV[0];
$rank = $ARGV[1];

Provide full country names for the HEML output

SWITCH:{
 $country = "OTHER", last SWITCH if ($countryCode eq
"OTH");
 $country = "OTHER", last SWITCH if ($countryCode eq
"oth");
 $country = "Australia", last SWITCH if ($countryCode eq
"AUS");
 $country = "Australia", last SWITCH if ($countryCode eq
"aus");
 $country = "Austria", last SWITCH if ($countryCode eq
"A");
 $country = "Austria", last SWITCH if ($countryCode eq
"a");
 $country = "Belgium", last SWITCH if ($countryCode eq
"B");
 $country = "Belgium", last SWITCH if ($countryCode eq
"b");
 $country = "OTHER", last SWITCH if ($countryCode eq
"OTH");
 $country = "OTHER", last SWITCH if ($countryCode eq
"oth");
 $country = "Denmark", last SWITCH if ($countryCode eq
"DK");

 GlAPI

Gallagher & Robertson GlAPI 187

 $country = "Denmark", last SWITCH if ($countryCode eq
"dk");
 $country = "Finland", last SWITCH if ($countryCode eq
"FIN");
 $country = "Finland", last SWITCH if ($countryCode eq
"fin");
 $country = "France", last SWITCH if ($countryCode eq
"F");
 $country = "France", last SWITCH if ($countryCode eq
"f");
 $country = "Germany", last SWITCH if ($countryCode eq
"D");
 $country = "Germany", last SWITCH if ($countryCode eq
"d");
 $country = "OTHER", last SWITCH if ($countryCode eq
"OTH");
 $country = "OTHER", last SWITCH if ($countryCode eq
"oth");
 $country = "Italy", last SWITCH if ($countryCode eq
"IT");
 $country = "Italy", last SWITCH if ($countryCode eq
"it");
 $country = "Netherlands", last SWITCH if ($countryCode eq
"NL");
 $country = "Netherlands", last SWITCH if ($countryCode eq
"nl");
 $country = "Norway", last SWITCH if ($countryCode eq
"N");
 $country = "Norway", last SWITCH if ($countryCode eq
"n");
 $country = "OTHER", last SWITCH if ($countryCode eq
"OTH");
 $country = "OTHER", last SWITCH if ($countryCode eq
"oth");
 $country = "Spain", last SWITCH if ($countryCode eq
"ES");
 $country = "Spain", last SWITCH if ($countryCode eq
"es");
 $country = "Sweden", last SWITCH if ($countryCode eq
"S");
 $country = "Sweden", last SWITCH if ($countryCode eq
"s");
 $country = "Switzerland", last SWITCH if ($countryCode eq
"CH");
 $country = "Switzerland", last SWITCH if ($countryCode eq
"ch");
 $country = "United Kingdom", last SWITCH if ($countryCode eq
"UK");
 $country = "United Kingdom", last SWITCH if ($countryCode eq
"uk");
 $country = "United States of America", last SWITCH if ($countryCode eq
"USA");
 $country = "United States of America", last SWITCH if ($countryCode eq
"usa");
 $nothing = 1;
}

The "tp8test" host must be defined in your cpic.cfg configuration file

$host = "tp8test";

Prepare a conversation

($cid, $rc) = Cpic7800::Initialize_Conversation ($host);

GlAPI

188 GlAPI Gallagher & Robertson

Establish connection

$rc = Cpic7800::Allocate ($cid);
die if ($rc);

Receive the first form

($buffer, $dr, $status, $rts, $rc) = Cpic7800::Receive ($cid);
die if ($rc);

Emulate the keystrokes "1" and "Transmit"

$rc = Cpic7800::Send ($cid, "1\@E1\@E".$countryCode."\@E".$rank."\@E", 0,
$rts);
die if ($rc);

Receive the next form

($buffer, $dr, $status, $rts, $rc) = Cpic7800::Receive ($cid);

assign company name, distributor name and distributor e-mail

$company = trim(substr($buffer,740,30));
$distributor = trim(substr($buffer,1300,30));
$Email = trim(substr($buffer,1380,30));

Generate the HTML output to send back to client

print "Content-type: text/html","\n\n";
print "<html>", "\n";
print "<body>", "\n";
print "You requested contact information on a G & R distributor in
\"".$country."\".<p>\n";
print "We found ".$distributor." of ".$company.".<p>\n";
print "You may send ".$distributor." an e-mail by clicking: \n";
print "".$Email."","\n";

print "</body>","\n";
print "</html>","\n";

Deallocate the session

Cpic7800::Deallocate ($cid);

exit (0);

method to strip trailing blanks

sub trim{
 my @out = @_;
 for(@out){
 s|\s+$||;
 }
 return wantarray ? @out : $out[0];
}

 GlAPI

Gallagher & Robertson GlAPI 189

FancyCpicCGI.pl: Simple OO Perl/CGI
connection to GCOS 8 host

-*- Mode: Perl -*-
FancyCpicCGI.pl --- Simple OO Perl/CGI example
Author : bard@gar.no
Created On : Mon Jun 26 10:32:03 2000
Last Modified By: bard , bard@gar.no

#!/usr/local/bin/Perl

Search the current directory for Perl modules

BEGIN {unshift(@INC,".")};

load the Cpic7800 Perl module

use Cpic7800;

load the CGI Perl module

use CGI ':standard';

The "tp8test" host must be defined in your cpic.cfg configuration file

$host = "tp8test";

Generate the form and instantiate CGI objects (save state, parse form
request etc.)

print header;
print start_html(
 -title => 'Perl GLAPI SDK Example',
 -author => 'bard@gar.no',
 -meta =>{'keywords'=>'Perl GlAPI CPI-C 7800',
 'copyright'=>'copyright 2000 G & R'},
 -text => '#000000',
 -bgcolor => '#ffffff',
 -link => '#0000ee',
 -vlink => '#551a8b',
 -alink => '#ff0000'
),
 img(
 {
 src => 'http://www.jabberwocky.org/~bard/images/glapirtcpic.gif',
 border => '0',
 height => '148',
 width => '350',
 align => 'bottom'
 }),
 b(i('CGI Perl Example')),

 p,
 start_form,
 "Which country? ",
 popup_menu(
 -name=>'country',
 -values=>['Norway',
 'Australia',

GlAPI

190 GlAPI Gallagher & Robertson

 'Austria',
 'Belgium',
 'Denmark',
 'Finland',
 'France',
 'Germany',
 'Italy',
 'Netherlands',
 'Other',
 'Spain',
 'Sweden',
 'Switzerland',
 'United Kingdom',
 'United States of America'
]),
 p,
 "Which distributor? ",textfield(
 -name => 'distributorNumber',
 -size => '2',
 -value => '1'
),
 p,
 submit,
 end_form,
 hr;

Prepare a conversation

($cid, $rc) = Cpic7800::Initialize_Conversation ($host);

Establish connection

$rc = Cpic7800::Allocate ($cid);
die if ($rc);

Receive the first form

($buffer, $dr, $status, $rts, $rc) = Cpic7800::Receive ($cid);
die if ($rc);

Emulate a sequence of keystrokes

$rc = Cpic7800::Send ($cid,
"1\@E1\@E".encodeCountry(param('country'))."\@E".param('distributorNumber')."
\@E", 0, $rts);
die if ($rc);

#Receive the next form

($buffer, $dr, $status, $rts, $rc) = Cpic7800::Receive ($cid);

$company = trim(substr($buffer,740,30));
$distributor = trim(substr($buffer,1300,30));
$Email = trim(substr($buffer,1380,30));

Deallocate the session

Cpic7800::Deallocate ($cid);

if (param()) {

 print

 GlAPI

Gallagher & Robertson GlAPI 191

 "You requested contact information on a ",b("G & R")," distributor in
",em(param('country')),".",
 p,
 "We found ".b($distributor)." of ".b($company),
 p,
 "You may send ".b($distributor)." an e-mail by clicking:
".a({href=>"mailto:".$Email},b($Email)),
 p,
 hr;

}
print end_html;

misc methods

trim off trailing white space

sub trim{
 my @out = @_;
 for(@out){
 s|\s+$||;
 }
 return wantarray ? @out : $out[0];
}

Covert country names to country codes recognized by the host application

sub encodeCountry{
 my $country = shift;

 SWITCH:{
 $countryCode = "AUS", last SWITCH if ($country eq "Australia");
 $countryCode = "A", last SWITCH if ($country eq "Austria");
 $countryCode = "B", last SWITCH if ($country eq "Belgium");
 $countryCode = "DK", last SWITCH if ($country eq "Denmark");
 $countryCode = "FIN", last SWITCH if ($country eq "Finland");
 $countryCode = "F", last SWITCH if ($country eq "France");
 $countryCode = "D", last SWITCH if ($country eq "Germany");
 $countryCode = "IT", last SWITCH if ($country eq "Italy");
 $countryCode = "NL", last SWITCH if ($country eq "Netherlands");
 $countryCode = "N", last SWITCH if ($country eq "Norway");
 $countryCode = "OTH", last SWITCH if ($country eq "Other");
 $countryCode = "ES", last SWITCH if ($country eq "Spain");
 $countryCode = "S", last SWITCH if ($country eq "Sweden");
 $countryCode = "CH", last SWITCH if ($country eq "Switzerland");
 $countryCode = "UK", last SWITCH if ($country eq "United Kingdom");
 $countryCode = "USA", last SWITCH if ($country eq "United States of
America");
 $nothing = 1;
 }
 return $countryCode;
}

GlAPI

192 GlAPI Gallagher & Robertson

 GlAPI

Gallagher & Robertson GlAPI 193

Appendix: Host Links
Manuals

Below you find a complete list of all available Host Links manuals:

Installation

Host Links Servers Installation and Configuration on UNIX/Linux

Host Links Emulators Installation and Configuration on UNIX/Linux

Host Links Installation and Configuration on Windows

Line handling

Gline Line Handler and DSA/OSI Configuration

Ggate Transparent Gateway

Gproxy Network Manager & SNMP Proxy Agent

G&R SSL Using SSL for security in G&R products

GlAPI Application Programming Interfaces

Gsftp Gateway between FTP and SFTP

Emulations

Gspool Network Printer Emulation

GUFT Unified File Transfer

G3270 Emulating IBM 3270 Terminals

G5250 Emulating IBM 5250 Terminals

Pthru Gateway to the Bull Primary Network

Qsim Emulating Questar DKU7107-7211 & VIP7700-7760

V78sim Emulating VIP7801 & VIP7814

Gweb Web Browser Front-end for DKU, VIP7700-7760,
VIP7800, IBM3270 and IBM5250 Emulations

GlAPI

194 GlAPI Gallagher & Robertson

 GlAPI

Gallagher & Robertson GlAPI 195

Appendix: Host Links Server
Administration
Gmanager is the Host Links administration tool. It can be used to control, configure
and monitor all the G&R Host Links server programs.

The dialog and interaction between the server programs and Gmanager is based on
information located in a database file _active.srv that is located in the Host
Links servers directory. The first time a Host Links server program starts up it
registers itself in this ‘active’ file. Thereafter the server program updates this
database with status information whenever the server is active.

The Gmanager program is available in 2 different versions – a Windows GUI based
version gmanw.exe and a character based subset gman (UNIX/Linux binary) or
gman.exe (PC console application).

The basic functionality of the two versions is the same, but the Windows version
interfaces directly to other Windows-only Host Links administrative tools
(Gconfig, Gservice), and can also start the browser directly to view HTML
reports produced by Gproxy, if enabled, or to view the HTML pages associated with
a Gweb or Glink for Java installation.

The Gproxy reports, Gweb and Glink for Java web pages are of course
available to administrators of UNIX/Linux Host Links systems, and can be viewed
by starting a browser manually, and connecting to the appropriate URLs:

http://mysite.mydomain.com/Gproxy
http://mysite.mydomain.com/Gweb
http://mysite.mydomain.com/GlinkJ

A summary of the available functions follows. The Windows-only functions are
marked.

GlAPI

196 GlAPI Gallagher & Robertson

Gmanager can be used to perform the most common Host Links administrative tasks
i.e.:

 View the last reported status information from the servers

 Stop or restart all servers, start a new server, stop, restart or delete a server

 Send a command to a server

 Load the DSA configuration into an editor, compile the DSA configuration

 Start the server configuration program or the configuration wizard (Windows)

 Load the Gservice configuration into an editor (Windows)

 Edit the product specific configuration files

 View a server log file, a server trace file or the server configuration file

 View program version numbers, program link information (Windows)

 View license info and license usage (Windows)

 View Host Links environment information, the ‘VMAP’ (Windows)

 Start Gdir directory administrator, Ggate monitor, Gspool monitor

 Gather all traces and logs for trouble-shooting by support

 Gping a DSA node to check the connection, use Gerror to explain error code

 Set a transport route state (down, enbl, lock, used)

 Check if a printer is on-line, request a list of bins

 Connect directly to the Gproxy, Gweb, GlinkJ HTML pages(Windows)

The commands that are accepted by all servers are:

 DOWN - terminates the server

 STATUS - reports server-specific status information to the log file

 PARAM - allows the operator to give a command line parameter to the server.
Note that some parameters do not work when given interactively i.e. they can
only be handled at server startup time

 DEBUG ON/OFF - toggles on and off tracing interactively

Additionally, the server in question might support other interactive commands.
For a description of the supported commands, check the server-specific
documentation.

 GlAPI

Gallagher & Robertson GlAPI 197

Appendix: G&R/DSA utilities
The Gline package includes a set of Gline communication utilities. These are
used when testing and debugging connection problems. The utilities are delivered
as part of the Gline package and can be used without any additional configu-
ration. The nodes to be tested must of course be configured in the dsa.cfg file.

Gconame

Lists the parameters generated from a given CONAME. The utility works for
both CONAME and RESOURCE e.g.:

gconame tnviptm

Checking 'dsa.cfg' for coname 'tnviptm'
Coname: tnviptm, type TM, parameters:
-DA misfld
-S_
-D_
-CODE 0000
-CODE 1000
-CODE 1800
-TEXT Remote SCID?:
-CODE 4700
-TEXT Remote application?:
-CODE 1400
-CODE 1600
-TEXT Password?:

GlAPI

198 GlAPI Gallagher & Robertson

Gerror

Shows the text message associated with a DSA reason code. Only the most
common codes are supported i.e. the ones related to network, transport and ses-
sion communication layers. Errors generated by the OSI-stack on the Host Links
platform are not covered by this utility; please refer to the documentation from
the vendor of the stack e.g.:

gerror 0109
Reporting component: Session control (01) 0109, Dialog
protocol error or negotiation failed (wrong logical record).

For a detailed description of all reason codes, please consult the Bull manual
OSI/DSA Network System Messages and Return codes (39A2 26DM).

Glnode

List and verify the communications parameters of the local node e.g.:

glnode
Local node name : GRDL
Local session control id : GRDL
DSA200 address (area:tsm): 54:60 (36:3C)

Gmacfix

When you connect to FCP cards on Bull mainframes via an Ethernet port on the
LAN-Extender the mainframe address is given in Ethernet (LLC) format. If you
connect to an FDDI adapter you must convert the MAC address to SMT. e.g.:

gmacfix 080038000fab
MAC address 080038000fab = 10001c00f0d5

Gping

Connects to a remote system using the Gline parameters set on the command line.
If successful it returns ‘connected to application’, otherwise it shows the error
code returned e.g.:

gping -li dsa -dn b7dl -da iof -du jim -pw mydogsname
Gping - $$DSA: Connected to application

 GlAPI

Gallagher & Robertson GlAPI 199

Grnode

Return the parameters (in dsa.cfg) and the state of a remote node e.g.:

grnode b6dl
Checking ‘dsa.cfg’ for node ‘b6dl’
Session control id : B6DL
DSA200 address (area:tsm) : 1:5 (1:5)
Inactivity interval : 0
Route 0
Load balance percentage : 0
TP class : 2
TP expedited : 0
TPDU size : 0
Network address : 130405

Gtrace

Same as gping but writes the DSA communication trace on the user’s terminal
(applicable to UNIX versions) e.g.:

gtrace -li dsa -dn ln40 -da snm151
D6:Application event @ 14:17:17.6003. tokenitem = 00
D6:Application event @ 14:17:17.6082. tokenitem = 00
D6:Connect request called, node = LN40
D6:OurBufferSizes. ApplMaxXmit = 511, ApplMaxRecv = 500
Rec:4000 0002 s:2
Rec:506B 0010 s:16
etc etc
Gtrace - line trace ending.
Gtrace - $$DSA: Connected to application.

Gtsupd

Update the state of a transport route. Transport routes can be set automatically in
a disabled state if a backup route is configured. When such a state change occurs
the route will be set back to the enabled state after a configurable timer has
expired. The default is 15 minutes. You can reset the state of such a route with
gtsupd ts-name enbl/used/down/locked e.g.:

gtsupd gars_rfc enbl
TS-entry ‘gars_rfc’, new state = enbl

GlAPI

200 GlAPI Gallagher & Robertson

 GlAPI

Gallagher & Robertson GlAPI 201

Appendix: Host Links trace
If you experience any kind of problem when using a Host Links application, the
application trace file and/or the line handler trace file will provide useful
documentation of the problem.

Trace activation
The Host Links products automatically create sub-directories in the debug
directory when debug is activated: at product level using the -dbg parameter, or
at line level using the -d_ or -s_ parameters to the line module.

Windows
server

gspool -id gs1 –dbg –ps \\SERVER\LEXMARK
 -li dsa -da tptst -d_ on

UNIX
Linux

gspool -id gs1 -dbg-pc lp -li dsa

 -da tptst -d_ on

Most G&R products include a facility for setting product or line parameters
dynamically. It is therefore generally possible to turn on debug or trace without
modifying the command line or configuration of a production system.

Trace types
All Host Links products accept a parameter –dbg, which starts an application
level trace of internal events. This is useful when investigating malfunctions or
looking closely at product behaviour.

All Gline line handlers accept a parameter -d_ to turn on a data trace. It records
data and enclosure level being exchanged with the line handler. It is useful when
documenting product malfunction e.g. an emulation error, because it records
exactly what the host sends and what the G&R application replies. It can be used
to simulate a customer situation, reproduce a problem and to verify that a
correction fixes the documented problem.

GlAPI

202 GlAPI Gallagher & Robertson

All Gline line handlers accept a parameter -s_ to turn on a session trace. It
records the raw data being exchanged between the line module and the under-
lying transport layer (e.g. OSI Transport, or TCP socket), as well as internal
events and protocol states. It is useful when investigating protocol failures such
as unsuccessful connect attempts or abnormal disconnections.

Structure
The Host Links file structure includes a debug directory to collect the trace and
debug files in one location where the permissions can be adjusted as required for
security. By default only the Host Links administrator can access the directory.
The debug directory is created by the initialization procedure and located (by
default) in:

Windows
server

\gar\debug

UNIX
Linux

/usr/gar/debug

If the application is a client type of application, a debug sub-directory with the
same name as the user (UNIX username or PC login name) is created and all
debug files are located there. This includes the line level trace except in the
special case where the client application connects via Ggate and the line level
trace is written on the Ggate system using the Ggate DSA node name as a debug
sub-directory.

If the application is a server type of application, then a sub-directory will be
created using the DSA node name on behalf of which the server application is
executing. If the server does not use DSA the default local session control name
is still used if there is a dsa.cfg file. If there is no dsa.cfg file then the
system’s UNIX or Windows communications node name is used. You can find
this name using the command uname –n on UNIX systems, or the Network
section of the control panel on Windows systems. This covers situations where
several instances of a server are executing on the same system and accepting
incoming calls to different DSA node names, or where several Host Links
systems using the same server product share a file system.

 GlAPI

Gallagher & Robertson GlAPI 203

Tracing Ggate
When Glink, a Host Links client or a customer application based on GlAPI
connects through Ggate to the application, the line handler trace is generated on
the Ggate system, with the name and location shown in the table:

Windows
server

\gar\debug\NODE\ggaNN-PPPP.dbg

UNIX
Linux

/usr/gar/debug/NODE/ggaNN-PPPP.dbg

NODE is the local DSA node name used by the Ggate system.

The trace file name consists of the prefix ggaNN- followed by the IP-address of
the client, suffixed by .dbg for a terminal session or –dbp for a printer session.
The following is a trace file name for Ggate session sequence number 5
executing on Host Links system GRDL initiated from a Glink client on IP-
address jim.gar.no:

 gga05-jim.gar.no.dbg

This file, and possibly also a Glink debug file and a Glink communication trace
file activated by the /J command line parameter will be needed by the support
engineer investigating any problem.

To enable a line handler trace through Ggate the product’s start-up command or
configuration file would look like this:

 -LI YYY:ZZZZ -S_ -D_

(YYY =line handler identification, i.e. DSA or DIWS)
(ZZZZ =IP-address of the system running Ggate)

Examples - G&R products
Examples of directory and file names in the debug structure are:

/usr/gar/debug/jim Debug directory for user ‘jim’
qsm.dbg Qsim emulator debug file -dbg

GlAPI

204 GlAPI Gallagher & Robertson

qsm-gli.dbg Qsim host line trace -li dsa -s_

pth-glit.dbg Pthru terminal line trace -term -s_

pth-glih.dbg Pthru -host line trace -li dsa -s_

g32.dbg G3270 emulator debug file -dbg

g32-gli.dbg G3270 host line trace -s_

/usr/gar/debug/mike Debug directory for user ‘mike’
v78.dbg V78sim emulator debug file -dbg

v78-gli.dbg V78sim host line trace -li dsa -s_

guf.dbg GUFT client debug file -dbg

guf-gli.dbg GUFT client host line trace -li dsa -s_

/usr/gar/debug/en01 Debug directory for node ‘en01’
guf.def GUFT server debug file -dbg

guf-gli.def GUFT server host line trace -li dsa -s_

gli-gli.dsa DSA listener host line trace -s_

gli-gli.diw DIWS listener host line trace -s_

gsp.def Gspool (default -id) debug
file

-dbg

gsp-gli.def Gspool (default -id) host
trace

-li dsa -s_

gga01-mike.gar.no.dbg Ggate line trace, first Glink -s_

gga02-mike.gar.no.dbg Ggate line trace second
Glink

-s_

/usr/gar/debug/en02 Debug directory for node ‘en02’
gsp.abc Gspool (-id abc) debug

file
-dbg

gsp-gli.abc Gspool (-id abc) host
trace

-li dsa -s_

gspc-gli.def Gspool DPF8 command
trace

-li tcp -s_

gspd-gli.def Gspool DPS8 data trace -li tcp -s_

 GlAPI

Gallagher & Robertson GlAPI 205

gsp._00 Gspool started on demand
debug

-dbg

gsp-gli._00 Gspool started on demand
trace

-li dsa -s_

CPI-C and Gweb trace files
Gweb uses the CPI-C libraries so the Gweb debug structure is exactly the same
as for CPI-C, except that Gweb inserts its own product identifier into the file
name structure. CPI-C applications use the ‘client’ style of debug and create a
debug directory with the UNIX username or PC login name used by the process
that started them.

The application level debug (-dbg) and line trace (-s_ and -d_) are set in the
cpic.cfg file. The line trace goes to the debug directory, with the name built
up as follows:

<product_id><session_id>-<process_id>.<debug_type>

Value Comment

cpi CPI-C API

cp3 CPI-C 3270

cp7 CPI-C 7800

cpd CPI-C DKU

gw3 Gweb3270

gw7 Gweb7800

product_id

gwd Gwebdku
session_id (nn) If multi-session application, 1-63
process_id n (n n n...) Varies by platform

dgb Application level debug debug_type

gli Line trace

GlAPI

206 GlAPI Gallagher & Robertson

Example:

\gar\debug\system debug directory for user "system"

cpi-16.dbg CPI-C single session debug -dbg

cpi-16.gli CPI-C single session line trace -li dsa -s_

cpi2-123.dbg CPI-C session 2 application
debug

-dbg

gw7-20172.gli Gweb7800 host line trace -li dsa -s_

 GlAPI

Gallagher & Robertson GlAPI 207

Appendix: OSI/DSA Return
Codes and Error Messages

OSI/DSA error codes
Below is a list of OSI/DSA error codes and the corresponding description. These
are the same descriptions that the G&R/Gerror utility will display when given
the DSA code as a parameter.

code Description

00xx General Errors
0001 Open Failure in LC - Reject for unknown reason
0002 Open Failure in LC - Acceptor customer node inoperable
0003 Open Failure in LC - Acceptor customer node saturated.
0004 Open Failure in LC - Acceptor mailbox unknown.
0005 Open Failure in LC - Acceptor mailbox inoperable.
0006 Open Failure in LC - Acceptor mailbox saturated.
0007 Open Failure in LC - Acceptor application program saturated
0008 Connection refused. Transport protocol error or negotiation failed.
0009 Open Failure in LC - Dialog protocol error or negotiation failed
000A Open Failure in LC - Presentation protocol error or negotiation failed
000B Open Failure in LC / Connection refused lack of system resources
000C Open Failure in LC / Connection refused from GCOS7 duplicate

user
000D Open Failure in LC, Duplicate implicit LID / Q class not started
000E Open Failure in LC, Duplicate GRTS Id / lack of memory resources
000F Open Failure in LC, No Logical line declared for DACQ / 7

connection refused
0010 Open Failure in LC, GCOS 8 GW Missing translation / Incorrect

device length in ILCRL.
0011 Open Failure in LC, DAC connection not initialized / Too many jobs

executing

GlAPI

208 GlAPI Gallagher & Robertson

0012 Open Failure in LC, No binary transfer / impossible to start the IOF
job

0013 Open Failure in LC, connection is not negotiated in FD mode /
impossible to start the IOF job

0014 Disconnection - Timeout resulting from absence of traffic.
0016 Option missing for an RBF mailbox.
0017 Connection refused - Incorrect access right for MB.
0018 Connection refused - Incorrect access rights for the application.
0019 Connection refused - Unknown pre-negotiated message path
001A Connection refused - Security validation failed.
001B Connection refused - Unknown acceptor mailbox extension.
001C Connection refused - Inoperable acceptor mailbox extension.
001D Connection refused - Invalid Message group number.
001F Disconnection - no more memory space.
0020 Connection refused - Unknown node.
0021 Connection refused - inaccessible node or Host down.
0022 Connection refused - saturated site.
0023 Connection refused - inoperable mailbox.
0024 (X.25) Packet too long. Problem with packet size. / Connection

block already used.
0030 Syntax Error - option not known (received on close VC).
0031 (X.25) No response to call request packet - timer expired.
0033 (X.25) Timer expired for reset or clear indication.
0039 Disconnection - transport protocol error (MUX).
003C Presentation Control Protocol Error
003E The application has not the turn
003F Message group closed
0040 (X.25) Facility code not allowed. / Connection refused - unknown

node
0041 Connection refused - path not available.
0042 Connection refused - Duplicate USER ID / Facility parameter not

allowed
0044 (X.25) Invalid calling address.
0045 (X.25) Invalid facility length.
0047 (X.25) No logical channel available.
004F DNSC: (X.25) Invalid call packet length.
0050 Normal disconnection (GCOS3/8)
0051 Error or Event on LC initiated by GW
0052 Error or Event on LC initiated by GW.
0053 Error or Event on LC initiated by GW. TCall
0054 Error or Event on LC initiated by GW. DIA in LOCK State
0055 Error or Event on LC initiated by GW. DIA error

 GlAPI

Gallagher & Robertson GlAPI 209

0056 Error or Event on LC initiated by GW. GW has no known
explanation.

0057 Error or Event on LC initiated by GW. Reject mailbox permanent
0058 Error or Event on LC initiated by GW. No more input lines in

DACQ
0059 Time-out on GCOS 3/8 gateway.
005A Error or Event on LC initiated by GW. Disconnect from terminal

without reason
005B Error or Event on LC initiated by GW. Wrong letter or wrong record
005C Error or Event on LC initiated by GW. Forbidden letter received
005D Error or Event on LC initiated by GW. Forbidden letter received
005E Error or Event on LC initiated by GW. No buffer for secondary letter
005F Error or Event on LC initiated by GW. No buffer for fragmented

letter
0060 Error or Event on LC initiated by GW. Disconnect on end of phase

record
0061 Error or event on LC initiated by GW. No buffer for control letter.
0062 Error or event on LC initiated by GW. Mailbox in closing phase
0064 Error or event on LC initiated by GW. Flow control error.
0065 Error or event on LC initiated by GW. CH locked by operator.
0066 Error or event on LC initiated by GW. Disconnect with a normal

TMG F2 exchange.
0067 Error or event on LC initiated by GW. Teletel rerouting error from

DACQ
0068 Error or event on LC initiated by GW. Teletel routing error from

DACQ
0069 Error or event on LC initiated by GW. Teletel rerouting error from

TM
006A Error or event on LC initiated by GW. Teletel rerouting error from

TM
006B Syntax error - text too long.
006C Syntax error - illegal object in a GA command.
006D Syntax error - unknown node Id.
0078 Syntax error - illegal command for this object.
0079 Syntax error - illegal date.
007F (X.25) No route available for X.25 switching.
0081 No more network routes available for switching.
0082 (X.25) Hop count reached for X.25 switching.
0083 (X.25) Flow control negotiation error.
0085 (X.25) Frame level disconnection.
0086 (X.25) Frame level connection.
0087 (X.25) Frame level reset.

GlAPI

210 GlAPI Gallagher & Robertson

0090 Frame level not set.
0092 (X.25) X.25 Echo service in use.
0093 (X.25) Incorrect password for PAD connection.
0094 (X.25) No more PAD connections allowed.
0096 (X.25) TS SX25 or NU X25 objects locked.
009C (X.25) Invalid packet header. X.25 protocol error.
009D (X.25) Incompatible header. X.25 protocol error.
009E (X.25) Logical Channel Number too high.
009F (X.25) Incorrect packet type.
00B2 Use of invalid password through PAD
00B6 Unknown mailbox selection for PAD connection using the PAD

password.
00C0 (X.25) Normal disconnection.
00D7 (X.25) TS image (of type DSA or DIWS) in LOCK state.
00DE (X.25) NS RMT or NR SW in LOCK state.
00E1 Connection refused. Mailbox is not in ENBL state.
00E6 QOS not available permanently.
01xx Session Control
0100 Logical connection accepted or normal termination
0101 Rejection for unknown reason or abnormal termination
0102 Acceptor node inoperable.
0103 Acceptor node saturated. When a node has no available resources
0104 Acceptor mailbox unknown.
0105 Acceptor mailbox inoperable.
0106 DNS: Acceptor mailbox saturated.
0107 DNS: Acceptor application program saturated.
0108 Transport protocol error or negotiation failed (DSA 200 only).
0109 Dialog protocol error or negotiation failed. (Wrong logical record).
010A Time-out on session initiation / unknown LID
010B Acceptor mailbox extension unknown.
010C Acceptor mailbox extension inoperable.
010D Invalid Session Number.
010E Unknown node.
010F System error. System generation error or insufficient memory space
0110 Application abnormal termination. Subsequent to an abnormal

occurrence in the dialogue
0111 Normal terminate rejected.
0112 Protocol not supported.
0113 Session control service purged by user.
0115 Disconnection Time-out on message group initiation.
0117 Incorrect Access Right for MB
0118 Incorrect Access Right for the Application

 GlAPI

Gallagher & Robertson GlAPI 211

0119 Pre-negotiated Message Path Descriptor unknown
011A Security validation failed
011E Incorrect object status
011F Not enough memory space available.
0120 Node unknown.
0121 The channel object (CH) is in LOCK state
0122 Saturation - no plug available
0123 Object status = LOCK
0124 Connection block (TSCNX) already used
0125 Disconnection already running
0126 The connection block (TSCNX) is disconnected (or not connected)
0127 Change Credit value < 0
0128 Ineffective Change Credit (delta = 0)
0129 No more deferred letters
012B "Reinitialization" Request
012C "Reinitialization" in progress
012D "Reinitialization" in progress, letters are dropped
012E Close virtual circuit. Either no mapping exists between PA/NR or

CL and VC/NS
012F Null connection object index.
0130 Undefined function at Sysgen time.
0131 Letter too large with respect to the negotiated size.
0132 The received letter is longer than the size which was
0133 Disconnection of the session control user
0134 Interface error on EOR (End-Of-Record) processing.
013C Presentation control protocol error.
013E You do not have the turn.
013F Message group closed.
0140 Session is closed.
0151 Request refused, no system buffers available.
0152 Incorrect addressing record.
0153 No presentation record in the ILCAL or ILCRL
0154 Negotiation failed on session mode
0156 Negotiation failed on resynchronization.
0157 Negotiation failed on END to END ACK
0158 No presentation record in the connection letter
0159 Negotiation failed on session mode
015A Negotiation failed on letter size (in the Logical Connection record).
015B Negotiation failed on resynchronization (in the Logical Connection

record).
015C Negotiation failed on end-to-end ACK (Logical Connection record).

GlAPI

212 GlAPI Gallagher & Robertson

015D No support of the "letter" interface because Multirecord is not
negotiated.

0160 Incorrect TSPACNX table.
0161 Protocol error on letter reception.
0162 Negotiation failure.
0163 Record header length error.
0164 Protocol error.
0165 Protocol error reception of control letter.
0166 Type or length error on interrupt letter.
0167 Protocol error on reception of data letter.
0168 Dialog protocol error.
0169 Unknown event.
016A Protocol error on data transfer.
016B Invalid status for a disconnection request.
016C Invalid status for a recover
016D Invalid status for a suspend/resume request.
016E Negotiation failure.
016F Unknown command.
0170 Error in presentation protocol
0171 Letter header length error in
0172 ILCAL is not DSA 200 protocol.
0173 Error in session record.
0174 Normal disconnection, without complementary reason code.
0175 Letter is not in ASCII or EBCD.
0176 Connection protocol letter header
0177 Letter header protocol error.
0178 Record header protocol error.
0179 Record header length error.
017A Mbx record header length error.
017B Error on buffer transfer.
017C DSA 200 record header protocol
017D DSA 300 record header protocol
017E Unsupported connection options.
017F Character error in ASCII string.
0180 No segmented record size.
0181 Invalid mailbox object index.
0182 Mapping error for a remote connection.
0190 No more buffers.
0191 Byte count is greater than GP.
0192 Byte count is greater than GP.
0193 Byte count is greater than GP.
0194 Byte count is greater than GP.

 GlAPI

Gallagher & Robertson GlAPI 213

0195 Byte count is greater than GP.
0196 Byte count is greater than GP.
0197 Byte count is greater than GP.
0198 No more buffers.
0199 Byte count is greater than GP.
019A Byte count is greater than GP.
019B Byte count is greater than GP.
019C Byte count is greater than GP.
019D Byte count is greater than GP.
019E Byte count is greater than GP.
019F Byte count is greater than GP.
01A0 Invalid transfer state.
01A1 Suspend protocol running.
01A2 Suspend protocol running.
01A3 Recover protocol running.
01A4 Forbidden function in write request. ($WRITE)
01A5 Conflicting parameters for segmented record. (SWBREC)
01A6 Protocol conflict - suspend/recover.
01A7 Protocol not supported - letter/end-to-end ACK. (SWBLET)
01A8 Multi-record letter in progress.
01A9 Interrupt request forbidden.
01AA Send control record request forbidden. (SCTROL)
01AB Forbidden for TWA session - turn is here. (SREAD)
01AC Termination forbidden - suspend or recover in progress. (STERM)
01C0 No space available for downstream connection request. (SMECNX)
01C1 No space available for upstream connection request. (SMUCNX)
01C2 No space available for upstream SCF connection. (SMRCNX)
01C3 No space available for session context. ($SCTX)
01E0 Enclosure or data length error for a write request. ($WRITE)
01E1 Enclosure or data length error for a write segment record request.

(SWBREC)
01E2 Enclosure error for 'give turn' request. (SGVTRN)
01E3 Interrupt request is not demand turn, attention/data attention, or

purge record.
01E4 Input status for a send control letter is not permitted.
01E8 Write request without turn.
01E9 Write segmented record request without turn.
01EA Write segmented letter request without turn.
01EB Send control letter request without turn.
01EC Disconnection request without turn.
02xx Presentation Control
0201 Protocol level not supported

GlAPI

214 GlAPI Gallagher & Robertson

0202 Application designation protocol error.
0203 Character encoding error. TM cannot support the proposed encoding.
0204 Character set error. TM cannot support the proposed character set.
0205 Character subset error. TM cannot support the proposed character

subset.
0206 Incorrect record encoding.
0207 Incorrect parameter encoding.
0230 Data presentation control error. The presentation control proposed

for this session cannot be used
0231 Device type is incompatible with the configuration.
0232 TM control protocol is incorrect.
0233 Device-sharing attributes are invalid.
0234 Initiator or acceptor configuration is not correct.
0235 Logical device index error.
0236 Number of logical devices is incompatible with the configuration.
0237 TM protocol record not supported.
03xx Terminal Management
0300 Sysgen error WARNING. There is no mapped object; some objects

will be spare.
0301 Operator requested session abort or logged.
0302 Idle time run out after secondary network failure.
0303 Idle time run out for no traffic.
0304 Form not found.
0305 Operator requested suspension.
0306 Destructive attention send on the session.
0307 Unknown TX addressed in this session. TM is unable to a the

session.
030A Protocol error. A record was received which did not comply with

current standards
0310 Insufficient resources. The receiver cannot act on the request

because of a temporary
031E Incorrect value for Retry or Wait parameters on UP LL command.
0320 Function not supported.
0321 Parameter error. This can result
0322 Resource not available. The
0323 Intervention required (on principal device).
0324 Request not executable.
0325 EOI required.
0326 Presentation space altered, request executed.
0327 Presentation space altered, request not executed.
0328 Presentation space integrity lost.
0329 Device busy. The device is busy and cannot execute the request.

 GlAPI

Gallagher & Robertson GlAPI 215

032A Device disconnected.
032B Resource not configured.
032C Symbol set not loaded.
032D Read partition state error.
032E Page overflow.
0330 Subsidiary device temporarily not available.
0331 Intervention required at subsidiary device.
0332 Request not executable because of subsidiary device.
0340 TM cannot accept a new connection.
0341 Object status incorrect.
0342 The TM configuration is not correct.
0343 Unknown TX addressed on this session.
0344 Data presentation protocol error.
0345 Device type is incompatible with the configuration, or is not

supported.
0346 TM control protocol incorrect.
0347 Device shareability attributes are invalid.
0348 Initiator or acceptor configuration is not correct.
0349 Logical device index error.
034A Number of logical devices incompatible with the configuration.
0350 Disconnection of TM after reinitialization of the network.
0360 File not found. (Welcome and Broadcast Messages)
0361 Site not found. (Welcome and Broadcast Messages)
0362 NASF error. (Welcome and Broadcast Messages)
0370 No-session timeout. Device disconnected.
0371 No-input timeout. Device disconnected.
0372 No-output timeout. Device disconnected.
0373 Timeout due to no backup session being initiated.
0374 Timeout due to no backup session being established.
0375 Connection refused because of late activation of back up session.
0376 Disconnection of current session to switch to backup session.
0380 AUTOCN parameter not declared.
0381 Mixed ETB in data sent by VIP screen and cassette
0382 Data header sent by the terminal incorrect.
0383 Desynchronization in the exchange of data.
0384 KDS block count error.
038C Remote terminal is not connected
0390 Unknown mailbox.
0391 No call packet to return.
0392 No "Possibility" command to return Protocol error
03C0 Slave device disconnection.

GlAPI

216 GlAPI Gallagher & Robertson

17xx Network Layer
1701 PAD connection refused.
1702 Flow control error.
1706 Logical channel number not zero in restart packet.
1707 Illegal packet length or use of D-bit forbidden.
1708 Illegal header.
1709 Illegal Logical Channel Number.
1710 Invalid packet type for the automaton state. Protocol error
1711 Incorrect packet type.
1712 Inconsistent network parameters in the generation file.
1713 No more space.
1714 DSAC network layer object not usable.
1717 USED/ENBL transition. Transport station is locked.
1718 USED/ENBL transition. This is a back-up NR.
1719 USED/ENBL transition. Dynamic close due to load.
171A USED/ENBL transition. Transfer time-out has elapsed.
171B USED/ENBL transition. This is a back-up NR.
171C USED/ENBL transition. Transport station is idle.
171E USED/ENBL transition. NR object is locked.
171F ENBL/LOCK transition. NR HDLC has no more memory space.
1721 Remote station is inaccessible via the configured network. Check
1723 Incorrect PAD password.
1724 Virtual circuit already in use. LCN (Logical Channel Number) too

high.
1725 Invalid virtual circuit.
1726 Packet too short. Protocol error for the equipment directly connected

to the Bull Datanet.
1727 Incompatibility between the generation parameters of two

communicating systems on window or packet size.
1729 Packet size in communicating systems not the same.
1731 Timer runs out while waiting for call confirmation.
1732 Timer runs out while waiting for clear confirmation.
1733 Timer has run out while waiting a reset confirm.
1740 Call setup or call clearing problem.
1741 Open failure on virtual circuit. No flow control on this NS.
1742 Incorrect facility. Protocol error for the equipment directly

connected to the Bull Datanet.
1744 Unknown subscriber.
1745 End of time-out on reset confirm. Invalid facility length. Protocol

error for the equipment directly
1747 No logical channel available.
1749 End of time-out on call confirm.

 GlAPI

Gallagher & Robertson GlAPI 217

174F Incorrect packet length. Protocol error for the equipment directly
connected to the Bull Datanet.

1755 Flow control, window, packet size or reset error.
1760 Frame disconnection.
1770 Frame connection.
1771 Frame reset.
1781 No more network routes available for X.25 switching.
1782 Maximum of 15 switches have been used,
1783 Flow control negotiation error.
1785 Frame level disconnection.
1786 Frame level connection.
1787 Frame level reset.
1790 Frame level not established.
1791 No more logical paths available for the PAD.
1792 Echo service busy.
1793 Incorrect PAD password.
1794 All the PAD virtual circuits are used
1795 X.25 initialization not possible.
179B LCN not null in restart packet
179D Incompatible header (receive error: all VC of concerned NS
179E LCN greater than NBVC in NS directive
179F Incorrect packet type
17A0 Invalid facility.
17B0 Normal disconnection.
17B1 X.25 Echo in use.
17B2 No more logical channels available.
17B3 No more PAD connections allowed.
17B4 TS SX25 or NU X25 object locked.
17B5 Buffer capacity overflow.
17B6 Normal disconnection.
17B8 Unknown calling SNPA (Sub-Network Point of Attachment).
17B9 Internet problem.
17CB Call collision on VC
17CC Incompatible generations (NR object without mapping).
17CE Invalid status NR locked.
17CF Lack of space.
17D0 Unknown subscriber.
17D4 TSCNX already used for another connection. SCF internal error.
17D7 Transport station locked.
17DD Proper NS locked.
17DE Invalid status NR locked.
17DF Lack of space.

GlAPI

218 GlAPI Gallagher & Robertson

17E0 Forbidden parameter or invalid value.
17E1 Invalid transition.
17E2 Upward-mapped object (TS) not locked.
17E3 No object mapped above.
17E4 NR not locked (MP NR -ADD/-SUB) or virtual circuit already open.
17E5 NR is last in list and the TS is not locked.
17E6 No object mapped above (UP NR -PRIO). NR not mapped on TS.
17E7 Upward mapped object not locked
17E9 Mix of datagram and connection network
17EB Class inconsistent with NR.
17EE Incompatible generations. NR object without mapping.
17FF Wrong parameter in administrative CALL
18xx Transport Layer
1800 Normal disconnection initiated by the correspondent
1801 Local saturation at connection request time.
1802 Failed negotiation at connection time.
1803 Duplicate connection. Two or more requests have been issued for the

same connection.
1804 Redundant request.
1805 Retransmission Time-out at transport level.
1806 Survey time-out at transport level.
1807 Transport protocol error.
1808 Session Control specified is not available (inaccessible).
1809 Requested Session Control Id unknown by remote transport.
180A Termination because of disconnection by administration.
180B Session Control/Transport interface error.
180C Connection request on non-sharable VC in case of ISO Transport.

ISO: header or parameter length is invalid.
1817 Station in shut-down state.
181F No memory space at connection time.
1821 Session Control inaccessible by configured session routes. ISO:

Session entity not attached to TSAP.
1824 Collision between Close NC and Open TC.
182E Remote station not configured.
182F Resource saturation.
1831 ISO: No route for the called NSAP.
1832 ISO: Received NSAP addresses are wrong.
1833 Segmentation violation.
1834 ISO:QOS priority not available temporarily, due to a local condition

(for example, lack of resources).
1835 ISO:QOS priority permanently unavailable locally (for example, due

to an error in the system generation).

 GlAPI

Gallagher & Robertson GlAPI 219

183A ISO: Remote reason not specified.
183C ISO: Remote transport entity congestion at connect request time.
1840 Server in terminating state. TC has been re-assigned on another NC.
18A1 An additional NC has been assigned to a TC.
18B0 NC has been re-assigned on another VC.
18EF Disconnection at Transport level caused by reception of RESTART

DSA during the transfer phase.

Windows Sockets error Codes
Below is a list of Windows Sockets return codes and the corresponding
description.

Hex
code

Windows Sockets Access
Error name

Description

2714 WSAEINTR The (blocking) call was cancelled
via WSACancelBlockingCall()

2719 WSAEBADF The socket descriptor is not valid.
271E WSAEFAULT An invalid argument was supplied

to the Windows Sockets API.
2726 WSAEINVAL An invalid call was made to the

Windows Sockets API.
2728 WSAEMFILE No more file descriptors are

available.
2733 WSAEWOULDBLOCK The socket is marked as non-

blocking and no connections are
present to be accepted.

2734 WSAEINPROGRESS A blocking Windows Sockets call
is in progress.

2735 WSAEALREADY The asynchronous routine being
cancelled has already completed.

2736 WSAENOTSOCK The descriptor is not a socket.
2737 WSAEDESTADDRREQ A destination address is required.
2738 WSAEMSGSIZE The datagram was too large to fit

into the specified buffer and was
truncated.

2739 WSAEPROTOTYPE The specified protocol is the wrong
type for this socket.

273A WSAENOPROTOOPT The option is unknown or
unsupported.

GlAPI

220 GlAPI Gallagher & Robertson

273B WSAEPROTONOSUPPORT The specified protocol is not
supported.

273C WSAESOCKTNOSUPPORT The specified socket type is not
supported in this address family.

273D WSAEOPNOTSUPP The referenced socket is not a type
that supports connection-oriented
service.

273E WSAEPFNOSUPPORT
273F WSAEAFNOSUPPORT The specified address family is not

supported by this protocol.
2740 WSAEADDRINUSE The specified address is already in

use.
2741 WSAEADDRNOTAVAIL The specified address is not

available from the local machine.
2742 WSAENETDOWN The Windows Sockets

implementation has detected that
the network subsystem has failed.

2743 WSAENETUNREACH The network address can't be
reached from this host. There is
probably a problem in the way you
have set up TCP/IP routing for your
PC (most likely you have not
defined a default router).

2744 WSAENETRESET The connection must be reset
because the Windows Sockets
implementation dropped it.

2745 WSAECONNABORTED The connection has been closed.
2746 WSAECONNRESET
2747 WSAENOBUFS Not enough buffers available, or

too many connections.
2748 WSAEISCONN The socket is already connected.
2749 WSAENOTCONN The socket is not connected.
274A WSAESHUTDOWN The socket has been shutdown.
274B WSAETOOMANYREFS
274C WSAETIMEDOUT Attempt to connect timed out

without establishing a connection.
274D WSAECONNREFUSED The attempt to connect was

forcefully rejected. The service on
the other side is not available.

274E WSAELOOP Too many symbolic links were
encountered in translating the path
name.

274F WSAENAMETOOLONG

 GlAPI

Gallagher & Robertson GlAPI 221

2750 WSAEHOSTDOWN The host machine is out of service.
2751 WSAEHOSTUNREACH The host machine is unreachable.
2752 WSAENOTEMPTY
2753 WSAEPROCLIM
2754 WSAEUSERS
2755 WSAEDQUOT
2756 WSAESTALE
2757 WSAEREMOTE
276B WSASYSNOTREADY Indicates that the underlying

network subsystem is not ready for
network communication.

276C WSAVERNOTSUPPORTED The version of Windows Sockets
API support requested is not
provided by this particular
Windows Sockets implementation.

276D WSANOTINITIALISED A successful WSAStartup() must
occur before using this API.

2AF9 WSAHOST_NOT_FOUND Authoritative answer host not
found.

2AFA WSATRY_AGAIN Non-authoritative answer host not
found, or SERVERFAIL.

2AFB WSANO_RECOVERY Non-recoverable errors,
FORMERR, REFUSED, NOTIMP.

2AFC WSANO_DATA Valid name, no data record of
requested type.

	Host Links GlAPI
	Installation
	Host Links Product Overview
	Terminal environment
	Server environment

	Scope of the product
	Run-time prerequisites
	Run-time licenses
	 GlAPI architecture

	 The GlAPI subroutine libraries
	The Gline API
	The CPI-C API
	The CPI-C 3270 API
	The CPI-C 5250 API
	The CPI-C 7800 API
	The CPI-C DKU API

	 Files delivered with GlAPI
	 Gline API
	Gline API Programming Issues
	Architecture
	Exporting and importing sessions between applications
	Programming in a Windows multi-threaded environment

	Gline API variables and definitions
	external variables
	definitions
	enclosure_t type

	Gline API functions list
	Gline API functions
	line_initialize
	line_release
	line_get_lid
	line_switch
	line_init_params
	line_parameter
	line_start
	line_startimport
	line_stop
	line_stopexport
	line_stopkeep
	line_get
	line_unget
	line_put
	line_putc
	line_puts
	line_write
	line_wait
	line_wait_lid
	line_input_available
	line_connected
	line_our_turn
	line_simultaneous
	line_demand_turn
	line_select
	line_waitcallback
	line_init_keepalive
	line_send_keepalive

	CPI-C APIs
	Architecture
	CPI-C 3270
	CPI-C 5250
	CPI-C 7800
	CPI-C DKU
	CPI-C compatibility
	CPI-C States & State-transitions
	CPI-C API variables and definitions
	SIDEINFO structure
	CPIC_FIELD_INFO structure
	definitions

	CPI-C API functions list
	CPI-C Emulation API functions list
	CPI-C functions
	Accept_Conversation (cmaccp)
	Allocate (cmallc)
	Deallocate (cmdeal)
	Get_Field_Info (cmfld)
	Initialize_Conversation (cminit)
	Prepare_To_Receive (cmptr)

	CPI C 3270: keyboard input
	CPI C 5250: keyboard input
	CPI C 7800: keyboard input
	CPI C DKU: keyboard input
	CPI-C configuration file: cpic.cfg
	CPI C API Parameters
	CPI C Emulation API Parameters

	Troubleshooting
	GlAPI tracefile
	CPI-C tracefile
	Line handler trace file
	When connecting through Ggate
	Trace file names

	Sample Gline API programs
	apitest.c: One host session
	 apitest2.c: Two host sessions
	 apiserv.c: Server session
	 apiclnt.c: Client session
	glapitst.pl: Perl example

	 Sample CPI-C API programs
	cpicline.c: Connection to TSS on GCOS8
	 cpicserv.c: Server session
	 cpicclnt.c: Client session

	Sample CPI-C 3270 API programs
	cpictest.c: Connection to IBM host
	cpictst.pl: Perl example

	Sample CPI-C 5250 API programs
	cpictest.c: Connection to IBM host
	cpictst.pl: Perl example

	Sample CPI-C DKU API programs
	dkuiof.c: Connection to IOF on GCOS7 host
	dkutss.c: Connection to TSS on GCOS8 host
	SimpleCpicCGI.pl: Simple procedural Perl/CGI connection to GCOS 8 host
	FancyCpicCGI.pl: Simple OO Perl/CGI connection to GCOS 8 host

	 Appendix: Host Links Manuals
	Appendix: Host Links Server Administration
	Appendix: G&R/DSA utilities
	Gconame
	Gerror
	Glnode
	Gmacfix
	Gping
	Grnode
	Gtrace
	Gtsupd

	Appendix: Host Links trace
	Trace activation
	Trace types
	Structure
	Tracing Ggate
	Examples - G&R products
	CPI-C and Gweb trace files

	Appendix: OSI/DSA Return Codes and Error Messages
	OSI/DSA error codes
	Windows Sockets error Codes

