

Script

Reference

h
tt

p
:/

/w
w

w
.g

lin
k
.c

o
m

/g
lin

k
/

G A L L A G H E R
R O B E R T S O N

G&R

GLINK
TM

G&R

PROFESSIONAL EDITION
ENTERPRISE EDITION

Microsoft, Windows, MS are registered trademarks of Microsoft Corp.

IBM and PC are registered trademarks of IBM Corp.

Glink Enterprise Edition, version 8.6

Glink Professional Edition, version 8.6

© Gallagher & Robertson A/S 1987-2019

All Rights Reserved

GALLAGHER & ROBERTSON A/S, Grini Næringspark 3, N-1361 Oslo, Norway

Tel: +47 23357800

www: http://www.glink.com/

e-mail: support@glink.com

 Contents

Gallagher & Robertson Glink: Script Reference i

Contents

Contents .. i

General ... 1
Overview ... 1
Starting a script ... 2
Script directories ... 5
Script file format ... 6
Nesting of scripts ... 7
Compiled scripts .. 7
Termination script ... 8

Script variables ... 11
Normal variables ... 11
Numeric variables ... 12
Built-in variables ... 13

The $STATUS variable ... 19
Pattern variables .. 19
File variables ... 20

Script command categories .. 21
Alphanumeric handling ... 21
Compiler and debugging commands ... 21
Configuration control .. 22
Control structures .. 23
Dial directory .. 23
File I/O commands .. 24
File transfer and control .. 24
Host interaction commands ... 25
Key definitions and handling ... 26
Menu handling ... 26
Screen and cursor control .. 27
System-related commands ... 27
Timing commands ... 28
User input commands .. 28
Variable handling commands .. 28

Contents

ii Glink: Script Reference Gallagher & Robertson

Windows-specific commands .. 29
Commands for backwards compatibility ... 30

Script commands .. 31
The #ELSE directive ... 31
The #ENDIF directive ... 31
The #IFDEF directive ... 32
The #IFNDEF directive ... 33
The ABORT command ... 33
The ACTIVATE command ... 33
The ADD command .. 34
The ADDMENU command ... 34
The ADMSHELL command ... 35
The APPEND command ... 35
The ASSIGN command ... 35
The BEEP command ... 36
The BEGIN command ... 36
The BINARY command .. 36
The BREAK command ... 37
The BUILDMENU command ... 37
The BUTTON command ... 38
The CALC command .. 40
The CALL command ... 41
The CAPTURE command ... 42
The CASE command ... 42
The CD command ... 43
The CFIX command .. 44
The CFXW command ... 44
The CHAIN command .. 44
The CHANNEL command .. 45
The CLEAR command .. 45
The CMPNUM command ... 45
The COMPARE command .. 46
The CONCAT command ... 46
The CONFIG command .. 47
The CONNECT (modem) command ... 47
The CONTEXT command .. 48
The CONVERSE command .. 49
The COPY command .. 49
The CRDB command .. 49
The CRDW command ... 50
The CREAD command.. 50
The CRLF command ... 50

 Contents

Gallagher & Robertson Glink: Script Reference iii

The CSWITCH command ... 51
The CTYPE command .. 51
The CURSOR command ... 52
The CXRESTORE command .. 52
The CXSAVE command ... 53
The DBOX command .. 53
The DCHANGE command .. 54
The DDEADVISE command .. 55
The DDECLOSE command .. 55
The DDEEXECUTE command ... 55
The DDENAME command ... 56
The DDEOPEN command .. 56
The DDEPOKE command .. 56
The DDEREQUEST command ... 57
The DEBUG command ... 57
The DEFAULT command ... 58
The DEFINE command ... 58
The DELAY command.. 58
The DELMENU command.. 59
The DFIND command ... 59
The DIAL command ... 60
The DISCONNECT (modem) command .. 60
The DIVIDE command ... 61
The DMARK command .. 61
The DOMENU command ... 62
The DOS command ... 62
The DOSN command .. 63
The DOWNLOAD command .. 64
The DPATTERNS command .. 64
The DREAD command ... 64
The DSCREEN command ... 65
The DTENTHS command ... 65
The DTIME command .. 65
The DUNMARK command .. 66
The DVARIABLES command .. 66
The DWHENS command .. 66
The ECHO command .. 67
The EIGHTBIT command .. 67
The ELSE command ... 67
The EMULATE command .. 68
The ENABLE command ... 68
The ENDBUILD command ... 68
The ENDIF command ... 69

Contents

iv Glink: Script Reference Gallagher & Robertson

The ENDSWITCH command ... 69
The ENDWHILE command .. 69
The ERASE command .. 69
The ERRORGOTO command ... 70
The EXECUTE command ... 70
The EXISTS command ... 70
The EXITSWITCH command... 71
The EXTRACT command ... 71
The FCLOSE command .. 71
The FCODE command .. 72
The FILTER command ... 72
The FIND command .. 73
The FIX command .. 74
The FLOC command ... 74
The FLUSH command .. 74
The FNDEXEC command ... 75
The FNEXT command .. 75
The FOPEN command .. 75
The FPOS command ... 77
The FRDBLOCK command .. 77
The FRDCHAR command .. 77
The FRDLINE command .. 77
The FSEARCH command ... 78
The FSEEK command ... 78
The FSIZE command .. 79
The FSKIP command .. 79
The FTP command .. 79
The FVERSION command.. 80
The FWTBLOCK command ... 81
The FWTLINE command ... 81
The GETDATE command... 81
The GETENV command ... 82
The GETFILE command ... 82
The GETKEY command ... 83
The GETLENGTH command ... 84
The GETMACRO command ... 84
The GETTIME command ... 84
The GETVALUE command .. 86
The GETWORD command ... 86
The GOSUB command ... 87
The GOTO command .. 88
The GPARAM command .. 88
The GPROFILE command .. 89

 Contents

Gallagher & Robertson Glink: Script Reference v

The GWCONNECT command.. 89
The HALT command .. 91
The HOST command .. 91
The ICON command ... 91
The IDLE command .. 92
The IF command ... 92
The INCLUDE command.. 96
The INFILE command .. 96
The INPC command .. 97
The INPUT command ... 97
The INVISIBLE command ... 98
The ISOCONNECT command .. 99
The ISSERVICE command ... 99
The KEYBOARD command ... 100
The KEYKERMIT command ... 100
The KEYS command... 100
The LABEL command .. 103
The LAYOUT command ... 103
The LCASE command .. 103
The LINE command .. 104
The LOCAL command .. 104
The LOG command ... 104
The MANDIAL command .. 104
The MARK command ... 105
The MATCH command ... 106
The MBAR command ... 106
The MCURSOR command .. 107
The MD command .. 108
The MDIAL command .. 108
The MENU command ... 109
The MESSAGE command .. 110
The MFONT command ... 110
The MINIT command ... 111
The MODE command ... 111
The MOK command .. 112
The MONO command ... 112
The MOP command .. 112
The MOPC command .. 113
The MOPTION command ... 113
The MOVEWINDOW command .. 114
The MPOS command .. 114
The MSGBOX command .. 115
The MTEXT command ... 115

Contents

vi Glink: Script Reference Gallagher & Robertson

The MULTIPLY command ... 116
The MVSCROLL command ... 116
The NAME command ... 117
The NETCONNECT command .. 117
The NETDISCONNECT command .. 118
The NEW command .. 118
The NOMENU command ... 118
The OBJECT command .. 119
The OEM command .. 119
The OLE command ... 120
The ON command ... 122
The ONLINE command .. 125
The PACE command ... 126
The PARAM command ... 126
The PARITY command... 126
The PATTERN command ... 127
The PAUSE command .. 127
The PERFORM command .. 128
The PICK command .. 130
The PLAY command ... 130
The POPUP command .. 131
The PORT command ... 131
The POS command .. 132
The PPROFILE command ... 132
The PREMOTE command .. 133
The PRINT command ... 133
The PSET command.. 133
The PUTFILE command ... 134
The QUIT command ... 134
The RATR command .. 135
The RCVLINE command .. 136
The RCVTURN command .. 137
The RD command ... 137
The RDIAL command ... 137
The RECEIVE command .. 138
The RECS command ... 139
The REMENU command .. 140
The REN command ... 140
The REPLACE command ... 140
The RESET command ... 141
The RETCALL command ... 141
The RETURN command ... 142
The RFORM command ... 142

 Contents

Gallagher & Robertson Glink: Script Reference vii

The RKEY command .. 142
The ROLL command ... 143
The RSBK command... 143
The RSCR command ... 144
The SCAN command .. 145
The SCREEN command .. 145
The SECURE command .. 146
The SEND command... 146
The SEPMENU command .. 147
The SERVER command .. 147
The SET command .. 147
The SETMACRO command ... 162
The SHELL command ... 162
The SHOW command ... 163
The SNDLINE command .. 163
The SPEED command ... 163
The SPLIT command .. 164
The STITLE command .. 164
The STRACE command .. 164
The STRIP command .. 165
The SUBRIGHT command ... 165
The SUBSTR command .. 165
The SUBTRACT command .. 166
The SWITCH command .. 166
The TCKEY command .. 167
The TIMEOUT command ... 167
The TITLE command .. 168
The TRACE command .. 168
The TRANSMIT command ... 169
The TRIM command ... 169
The TRNLINE command .. 169
The TRUNCATE command .. 169
The TSMDIR command .. 170
The UCASE command .. 170
The UNMENU command ... 171
The UPLOAD command ... 171
The URLSHOW command ... 171
The WELCOME command ... 172
The WHEN command ... 172
The WHILE command .. 173
The WINDOW command ... 174
The WKEY command ... 175

Contents

viii Glink: Script Reference Gallagher & Robertson

The DBOX command ... 177
General .. 178
Dialog units ... 180
Dialog box controls ... 181
Dialog box elements .. 188

Automatic group boxes .. 188
Bitmap buttons ... 189
Bitmaps .. 190
Check boxes ... 191
Combo boxes ... 192
Centered text .. 193
Default pushbuttons ... 194
Edit text ... 195
End of group marker .. 196
End of horizontal group ... 196
End of vertical group ... 197
Group boxes .. 197
Horizontal group .. 198
Icon buttons ... 199
Icons .. 200
List boxes... 201
Left justified text ... 204
Pushbuttons .. 205
Radio buttons ... 206
Right justified text ... 207
Size buttons ... 208
Trackbars ... 209
Vertical group .. 210

External interface ... 211
Overview of extension DLL interface ... 211
Using external functions in a script ... 211
Programming external script functions .. 212
Data types for the DLL .. 216

C: character data .. 217
H: handle data .. 217
I: integer data ... 217
L: long integer data .. 217
O: script OK status .. 218
S: structure data ... 218

External values .. 218
Search rules ... 220

 Contents

Gallagher & Robertson Glink: Script Reference ix

Examples of extension DLLs .. 220

Script examples ... 221
Simple login to bulletin board ... 221
More complex login .. 222
Login with error checking ... 223
'Event-driven' login.. 224
Menu-controlled script .. 225

Running VBScript or JScript files .. 227
Inheriting the GlinkApi object ... 228
Passing input parameters ... 229
Return values ... 230

Configuration file format ... 232

Index .. 259

 General

Gallagher & Robertson Glink: Script Reference 1

General

Script files are a way of automatically programming your dialog with the host

machine. Tasks requiring the same kind of input from your terminal each time

can thus be automated. Depending upon how much work you are prepared to

invest in the writing of such scripts, intelligent decisions may be made as to the

correct course of action to take in a variety of situations. This can allow your PC

to handle dialog with host systems in unattended mode. Also, easily program-

mable menus and dialog boxes allow you to provide an easy-to-use user interface

to complex host systems, hiding the details of the interaction with the host from

the user at the terminal. The script files used by Glink are standard PC text files

that you may prepare using any normal text editor such as NOTEPAD.

Overview

A script file is first created with your editor. It contains commands like 'send' and

'receive' to tell the emulator what to do. The script procedure is invoked using

selecting the FILE/SCRIPT PROCEDURE option from the menu bar, or pressing the

'start script' key, ALT+O.

General

2 Glink: Script Reference Gallagher & Robertson

By convention, script files will have an extension of 'SCRGL'. This allows the

file window to select only the script files if you need to view your local directory

to find the script. When the script has been selected, it will be 'compiled' by

Glink. That is, the entire file will be read and checked for errors before the actual

procedure is started, and a 'tokenized' version prepared that allows for much

faster execution than would have been the case if the script had been interpreted

while it was executing. If the script is OK, then Glink will start executing the

commands found there, and the status line will show you the name of the script

file to let you know that an automatic procedure is being performed. The script

may call for Glink to wait for input from the host - any time it does this and

seems to be stopped you can always get it going again by pressing any key on

your keyboard. Things you type will also be sent to the host; this may be useful if

you need to type something like a filename that you don't want to include in the

script itself. The script can also be stopped at any time just by pressing the ESC

key. Also, if the script is waiting for something to happen, for example in a

receive command, you can tell it to stop waiting simply by pressing the ALT+O

key.

Starting a script

There are several ways of starting a script. The simplest is to do it manually with

the ALT+O command from the keyboard or from the menu bar by using the

FILE/SCRIPT PROCEDURE option. The ALT+O command will display a list of the

scripts in the current directory you may to execute. The script you select will then

be executed, assuming it contains no errors.

 General

Gallagher & Robertson Glink: Script Reference 3

Another way of starting a script is by 'linking' it to the dial directory. If a host

defined in the dial directory has a script name specified as part of its configu-

ration then this script will be started automatically each time you connect to the

host in question.

Yet another way of starting a script is to configure a macro key that initializes the

script using the '^*scriptname' syntax. If an entry there contains the '^*'

string then the rest of the text in that line will be considered to be the name of a

script that is to be executed when the appointment falls due.

The host machine may also start a script, using the defined escape sequence for

that purpose (see the Command extensions appendix to the User’s Guide).

A script may be run as the emulator is started; this is done using the /S command

line parameter, either written directly in the command line, or specified using the

GLWINOPT environment variable.

You may also start a script from the File Manager (or any other application that

allows you to drag files) simply by dropping the script onto the Glink window or

icon. For this to work the file name must have the extension '.SCRGL', or

'.SCR' on a short filename system. Dropping a file with any other name will

cause Glink to attempt to start a script called DRAGDROP.SCR. If that script is

found then the name of the dropped file will be provided to it in the $FILE inter-

nal variable.

General

4 Glink: Script Reference Gallagher & Robertson

Finally, you may also start a script from another script, using the CALL and

CHAIN script commands.

A special syntax is available in any situation where a script file is to be started. If

the file name starts with an equals sign (=) then the name will be considered to be

a script command, rather than a file name. For example, you could type in

'=DEBUG ON' in the ALT+O window to enable debugging interactively, or send

'=HALT' as a script command sent from the host to terminate the emulator.

In any situation where you are starting a script you may start at a predefined

location in the script file by using the form:

FILENAME!label_name

in which case execution of the script will begin at the specified label rather than

at the start of the script (this syntax is not allowed if the script in question is a

compiled script). You may supply parameters for the script to be executed by

specifying them immediately after the name of the script (and starting label if

present). These will be accessible from the script using the $PARAMETER and

$Pn internal variables. For example: CALL "MYSCRIPT.SCR p1 p2".

 General

Gallagher & Robertson Glink: Script Reference 5

Script directories

A script file may be in one of several directories. When a script name is speci-

fied, if it's an absolute pathname (a name with a colon or a backslash in it) then

Glink will just look for that particular file. If you specify just the filename then

Glink will search for the file in the following directories (in this order):

1. In the current directory.

2. In the user script directory (specified with /OU in the command line or using

the GLSUSE environment variable).

3. In the script directory (specified with /O in the command line or using the

GLSCR environment variable).

4. On the user directory (specified with /U in the command line or using the

GLUSE environment variable).

5. On the configuration directory (specified with /CD in the command line).

6. In the Glink directory (the directory in which the Glink program resides).

General

6 Glink: Script Reference Gallagher & Robertson

Script file format

The format of the script file is simple: it consists of a list of script commands,

either one per line or several on a line, separated with semicolons (;). The first

word of each command is the script command. Only the first four characters of

the command are checked, so if you wish you can write 'ASSI' instead of

'ASSIGN', for example. Some commands (like 'QUIT') don't need any extra

information, while others (like 'SEND') will need one or more extra items of

information. In the case where this is a string of text, the text should be enclosed

in quotes (for example, "hello^M"). Note that the same convention is used as

for macro keys, with the caret symbol and an alphabetic character to send control

characters should these be needed. You may use either single (') or double (")

quotes to enclose your strings, this allows you to include quote characters inside

a string, e.g. ' " '.

For script constants, the caret (^) control-character syntax is extended to support

other types of format for 'awkward' constants. The complete list is as follows:

^^ inserts a single ^

^X control character (uses the bottom five bits of the specified

character only)

^#ddd decimal specification

^&ooo octal specification

^$hh hexadecimal specification

Using the different possibilities here, this means that the ASCII CR control

character may be specified in any of the following ways:

"^M", or "^#013", or "^&015" or "^$0D"

Note that the leading zero in these expressions is required; the expression must

have the exact length as specified above. See the Character equivalents appendix

to the User's Guide for a table of control characters.

When more than one command is specified on a line, the commands will nor-

mally be separated using semicolons as mentioned. This is not required, but is

recommended, in that some of the script commands take a variable number of

parameters, and use of the semicolon will then resolve any possible ambiguities.

 General

Gallagher & Robertson Glink: Script Reference 7

Comments may be included in script files; this is done by using an asterisk (*) at

the start of a comment. This may be done either at the start of a line or partway

through the line. In any case, the rest of the line will be ignored by the script

compiler. Note that this means that you MUST use quotes to enclose an asterisk

that is part of a script command. For example:

KEYS Gr- "*" Gr- "J" * This is a comment

is a valid statement, showing usage of the asterisk both inside a script statement

and to introduce a comment.

Scripts of any size may be compiled (subject to memory limitations) but the

compiled version is limited to 64Kb of generated object code.

Nesting of scripts

A script may call another script using the CALL command. Other situations may

arise where a script will be invoked 'inside' another script, and in general Glink

will let you do this. A typical situation for this type of usage is where a script has

been written as a 'monitor' for certain strings that may be received from the host

and is 'idling' with the ONLINE command. In this case, starting a new script,

either under host control or manually with ALT+O will start the new script, but

when the new script is terminated, control will return to the original script. WHEN

statements that might be active in the original script are still active in this case

(assuming that the called script does not change the patterns involved, etc.).

Transfer of parameters to another CALLed script may be done either using the

normal variables (which are not destroyed when a script is CALLed) or using

$Pn/$PARAMETER and including the parameters in the CALL.

Compiled scripts

A script will normally be run directly from the text file that contains the script

commands; the overhead incurred for analyzing the input is very slight for all but

very large files. However, either because the script is large or for security

reasons, you may wish to run 'compiled' scripts. These consist of an internal

format which is more compact than the original text file and which also is encryp-

ted to prevent easy analysis of the contents of the script procedure. To compile a

script, simply include the command:

General

8 Glink: Script Reference Gallagher & Robertson

OBJECT "filename"

anywhere in the script, and a compiled version will be produced on the named

file. The script will in this case not actually be executed. The output file,

"filename", may then be used in place of the original script.

When you update to a new release of the software, you will usually have to

recompile any scripts that were prepared with an earlier release. If this is the case

you will receive a warning if you try to use scripts requiring recompilation.

Termination script

You may supply a script to be executed whenever Glink is to be terminated by

the user, simply by placing a script using the conventional name $$TERM.SCR

in your script directory. If this script is present then it will be executed whenever

a request is made to terminate Glink, and Glink will not be terminated. You will

normally provide for such termination by including a HALT command in the

script itself.

The terminate script will by default only be run the first time the user attempts to

exit Glink (this is to protect you from unintentionally getting into a situation

where the user is unable to terminate at all). The script may use the SET TERM

TRUE command to request that the terminate script should be re-enabled if this is

required. In the same way a script may be executed at any time to perform a SET

TERM FALSE to disable a later execution of the terminate script.

 General

Gallagher & Robertson Glink: Script Reference 9

 Variables

Gallagher & Robertson Glink: Script Reference 11

Script variables

Normal variables

Any place that you can use a string, you can also use a 'variable'. Glink provides

you with 99 variables, numbered from 1 to 99.

Values may be assigned to these directly using the ASSIGN command, or

interactively using the INPUT command, up to a maximum of 255 characters per

variable. Variables are referenced using the number of the variable prefixed with

the percent (%) sign. You can use a variable anywhere that you can use a string,

as well as in some commands that require a variable, like ASSIGN. When the

command requires a variable the percent sign is optional, but we suggest you

always include it for the sake of readability. For example, to send the current

contents of variable 8 and a carriage return you could use:

SNDLINE %8

Also, in all situations where you are able to use a simple string, you can combine

strings, variables and built-in variables (see below) by using parentheses in the

following way, for example:

SNDLINE ($LOGIN " " $PASSWORD ";" %2)

Script constants, with the ^control-character syntax may also be used. For

example the ASCII CR control character may be specified in any of the following

ways:

ASSIGN %2 ("^M" "^#013" "^&015" "^$0D")

ASSIGN %3 "^M^#013^&015^$0D"

Variables may be specified indirectly using the contents of another variable; this

is done by using the underline (_) character instead of the % character before the

number of the variable. This usage requires that the specified variable contain a

valid number, of course. For example, if variable %5 contains "12", then the

script statement:

Variables

12 Glink: Script Reference Gallagher & Robertson

ASSIGN %11 _5

will assign the contents of variable %12 to variable %11 rather than using the

contents of variable %5.

To enable you to make scripts more legible, a statement is provided which allows

you to associate a name with any of the numbered variables. This is done with the

DEFINE statement:

DEFINE 1 "Count"

...

ASSIGN %Count "10"

shows an example of this in practice.

Numeric variables

There is no predefined numeric variable type; if a script variable is referenced in

a context where the contents must be numeric then the current contents of the

variable will be evaluated and used numerically if possible. If the current con-

tents cannot be evaluated as a numeric value then the OK status will be set false

and it is up to the executing script to check whether or not the operation was suc-

cessful or not.

Valid numeric values can be supplied either as decimal integers (with or without

decimals) or in exponential format. Decimal integers should have at most 9

figures before the decimal point; values supplied in exponential format must be

within the limits handled by the script language (the absolute value must be

between 2.9E-39 and 1.7E+38).

Numeric results from script computations (ADD, SUBTRACT, MULTIPLY and

DIVIDE) will be returned as straightforward numeric values (integers with

trailing decimal zeros removed) if the absolute value of the result is between 0.01

and 32767. Otherwise the result will be returned in exponential format. The script

TRUNCATE command can be used to convert numbers outside this range into

numeric values.

NOTE
If an overflow condition occurs with a numeric value, then the script
will terminate with the message “Value of numeric parameter out of
range”.

 Variables

Gallagher & Robertson Glink: Script Reference 13

Built-in variables

The script language provides for a number of 'built-in' variables that may be used

in place of predefined strings or script variables. Note that these are 'read-only';

in other words, you can only use them in those places where they would not be

modified (in general, in the same places as you can use literal strings).

The following built-in variables are supported:

$BETA Single character specifying betatest release level (null for

production releases)
$CADDRESS For external interface (see separate chapter, page 211)
$CALLER Calling address (for scripts that wait for incoming calls

over X.25/NetBIOS)
$CASE Returns the current case sensitivity setting (see SET

CASE)
$CERR Returns error position in failing CALC command
$CFGCHANGED Returns 1 if modifications have been made to the current

configuration, otherwise 0
$CHANDLE Window handle of emulator child window
$CMDLINE Returns the command line parameters used to start this

copy of Glink
$COLLECT Last (up to) 255 characters received while waiting in

ONLINE, RECEIVE or MATCH statement
$COMMENT Comment from dial directory
$CONFIG Name of current configuration file
$CRECEIVE Provides a count of the total number of characters received
$CSEND Provides a count of the total number of characters sent
$CTABS Returns 1 if the clipboard with tabs option is set, otherwise

0
$CX Returns last column that was right-clicked
$CY Returns last row that was right-clicked
$DBLCLICK Contains ID of list or combo box that was double-clicked,

if any
$DBOX Returns the number of the button that was used to exit a

dialog box
$DDIR Returns the name of the current dial directory
$DELIMITERS Returns the current word delimiters as set with SET

DELIMITERS or in the screen options setup
$DEVICE Returns the allocated LU name on TN3270E interfaces
$DIAL Number of last dial entry (always 3 digits)
$DIRECTORY Name of current directory

Variables

14 Glink: Script Reference Gallagher & Robertson

$DOWNLOAD Name of Glink download directory
$DRESULT Result string from last dial
$DTYPE Number corresponding to current download type
$DX X-coordinate last DBOX was left at
$DY Y-coordinate last DBOX was left at
$EMSG Current error message from status line/bar
$ERRORLEVEL Returned error level from last DOS command
$FE Configured editor name (/FE)
$FIELD Current field number (VIP forms mode)
$FILE Picked file name (see PICK command)
$FL Configured file display program (/FL)
$FNDX Used with FIND, returns column of string found
$FNDY Used with FIND, returns row of string found
$FORM Current TSM8/TCS form name
$FP Configured file printer (/FP)
$FPOS(#n) Current line number in file #n
$FRAMEPAPER Current frame wallpaper file if any
$FREE Free disk space on current drive (bytes)
$FSEEK(#n) Current absolute position in file #n
$FTP Current progress of FTP:

0=finished, 1=starting up, 2=running
$FTPADDRESS Returns the current host IP address for FTP transfers
$FTPCONFIG Returns the current host configuration filename for FTP

transfers
$FTPDEFAULT Returns the name of the default host name for FTP

transfers
$FTPERROR Returns an error message in the case of a failed FTP

transfer
$FTPHOST Returns the current host name for FTP transfers
$FTPMODE Returns the current connection mode for FTP transfers

(0 = Normal, 1 = PASV)
$FTPPASSWORD Returns the current login password for FTP transfers
$FTPRESULT Status for last FTP transfer (0=OK, else error code)
$FTPSILENT Returns the current setting for FTP silent mode

(0 = off, 1 = on)
$FTPTRANSFER Returns the current transfer mode for FTP transfers

(0 = Auto, 1= ASCII, 2 = BINARY, 3 = LOCAL8)
$FTPUSER Returns the current login user name for FTP transfers
$FX Current font size (X) in pixels
$FY Current font size (Y) in pixels
$Gn nth element of global parameter $GPARAM
$GLCFG Name of Glink configuration directory
$GLDEMO Name of Glink demo directory

 Variables

Gallagher & Robertson Glink: Script Reference 15

$GLINK Name of Glink base directory
$GLSCR Name of Glink script directory
$GLSUSE Name of Glink user script directory
$GLUSE Name of Glink user directory
$GPARAM Global parameter value (see GPARAM)
$HINSTANCE Instance handle of Glink task
$HMSG Current host message from status line/bar
$HOST Current host machine name
$IDLE Provides the current idle timer value (see SET IDLE)
$IFILE Name of file that default icon is currently loaded from
$INSTANCE Instance number
$INTERFACE Zero if line interface is down, one if interface is up
$INUMBER Number of default icon in $IFILE file
$IPADDRESS Provides IP address for current host (Windows sockets

only)
$ISTATUS Contains the status of the last file operation that accessed

the internet (3-digit numerical code followed by text)
$KEYPRESS Last key pressed while in script
$LANGUAGE Language key for program texts
$LASTFILE Last file downloaded (or started downloading) with a

protocol file transfer
$LEVEL Current script stack depth (for debugging only)
$LICBACKUP Glink license backup server name
$LICENSE Full text of license info as displayed in text tab of the

license upgrade dialog box
$LICSERVER Glink license server name
$LINE Current line of emulator screen
$LNNO Current script source line number
$LOCIPADDR IP address this machine used for last connection (see also

$MYIPADDR, $MY4IPADDR, $MY6IPADDR,

$MYAIPADDR)
$MEM Available free memory (bytes)
$MINIT Contents of modem init string
$MOPTION Number of last selected option from a menu (zero if no

option ever selected)
$MRECT '1' if current mark is rectangular, otherwise zero
$MSRECT '1' if current scrollback mark is rectangular, otherwise zero
$MSX1 Left coordinate of scrollback mark, zero if no mark
$MSX2 Right coordinate of scrollback mark, zero if no mark
$MSY1 Top coordinate of scrollback mark, zero if no mark
$MSY2 Bottom coordinate of scrollback mark, zero if no mark
 See the description of the RSBK command for an example

of the use of the above four variables.

Variables

16 Glink: Script Reference Gallagher & Robertson

$MWHEEL Returns the mouse wheel rotation value and resets that

value to zero (each click gives 120 units)
$MX Current mouse X-coordinate
$MY Current mouse Y-coordinate
$MX1 Left coordinate of screen mark, zero if no mark
$MX2 Right coordinate of screen mark, zero if no mark
$MY1 Top coordinate of screen mark, zero if no mark
$MY2 Bottom coordinate of screen mark, zero if no mark

 See the description of the RSCR command for an example

of the use of the above four variables.

$MY4IPADDR IPv4 address for this machine (see also $LOCIPADDR,

$MYIPADDR, $MY6IPADDR, $MYAIPADDR)
$MY6IPADDR IPv6 address for this machine (see also $LOCIPADDR,

$MYIPADDR, $MY4IPADDR, $MYAIPADDR)
$MYAIPADDRE All IP addresses for this machine, comma separated (see

also $LOCIPADDR, $MYIPADDR, $MY4IPADDR,

$MY6IPADDR)
$MYIPADDR IP address for this machine (see also $LOCIPADDR,

$MY4IPADDR, $MY6IPADDR, $MYAIPADDR)
$NAME Current user name
$NCOMPUTER Network computer name
$NGLINK Number of copies of Glink currently executing
$NSESSION Number of active sessions
$NT ‘1’ if running under Windows Server OS, otherwise ‘0’
$NUSER Network user name
$OLEERROR Provides error code when OLE command fails (if

available)
$OLERESULT Provides error text when OLE command fails.
$Pn nth parameter (see below)
$PARAMETER Parameter string (see below)
$PASSWORD Password from dial directory
$PETX Returns the ETX position at the time of the most recent

transmit command, in scrollback coordinates
$PETY Returns the ETY position at the time of the most recent

transmit command, in scrollback coordinates
$PHONE Phone number of current dial entry
$PKEY Returns the private key used in the SSH PuTTY interface
$PRINTER Currently configured printer
$PSTX Returns the STX position at the time of the most recent

transmit command, in scrollback coordinates

 Variables

Gallagher & Robertson Glink: Script Reference 17

$PSTY Returns the STY position at the time of the most recent

transmit command, in scrollback coordinates
$RESOURCE Provides the current host profile name or TNVIP resource
$RLTERM Provides the terminating character for the RCVLINE

command
$ROUND Current script rounding state (see SET ROUND)
$SBKL Number of active scrollback lines
$SCAN Offset of string found with SCAN command
$SCRIPT Returns the fully qualified path name of the script currently

running
$SERIAL Glink serial number
$SERVER Currently configured host or IP address
$SESSION Current session number
$SID Current session identifier
$SSHPASS SSHD password
$SSHSERVER SSHD server name
$SSHUSER SSHD user name
$STATUS Status string (described below)
$STITLE Current scrollback window title
$STX Returns column for start of transmission pointer (zero if

none set)
$STY Returns row for start of transmission pointer (zero if none

set)
$SWDX Width of scrollback window, in pixels
$SWDY Height of scrollback window, in pixels
$SWLVL Current script switch stack level
$SWX X-coordinate of scrollback window, in pixels
$SWY Y-coordinate of scrollback window, in pixels
$SX Screen size (columns)
$SY Screen size (rows)
$TIMEOUT Current timeout value for script receives
$TITLE Current window title
$TURN Current turn status (1=have turn, 0=not)
$UPLOAD Name of Glink upload directory
$VERSION Glink version number
$W32 ‘1’ if using 32-bit version of program, otherwise ‘0’
$WALLPAPER Name of current wallpaper file (if any)
$WDIR Path for Windows directory (note: no trailing '\'

character)
$WDL Used with GETWORD, returns length of word
$WDX Width of main window, in pixels
$WDX1 Used with GETWORD, returns column for start of word
$WDX2 Used with GETWORD, returns column for end of word

Variables

18 Glink: Script Reference Gallagher & Robertson

$WDY Height of main window, in pixels
$WDY1 Used with GETWORD, returns row for start of word
$WDY2 Used with GETWORD, returns row for end of word
$WHANDLE Window handle of Glink main window
$WHEN Pattern number for last activated WHEN
$WINDOW Current window state: 0 = normal, 1 = maximized, 2 =

minimized
$WINSTAMP Returns the version of Windows for which this copy is

stamped, in the same format as for $WINVER
$WINVER Returns the current version of Windows. Windows Vista

and Windows Server 2008 return 600, Windows 7 and

Windows Server 2008 R2 return 601, Windows 8 and

Windows Server 2012 return 602, Windows 8.1 and

Windows Server 2012 R2 return 603, and Windows 10

returns 1000. See also $NT
$WORD Used with GETWORD, returns selected word
$WSYSDIR Path for Windows system directory. Note: no trailing '\'.
$WX X-coordinate of main window, in pixels
$WY Y-coordinate of main window, in pixels
$X Current screen X coordinate
$Y Current screen Y coordinate

Parameters (see $Pn and $PARAMETER) may be supplied for scripts either in

the command line (using the /I parameter), this being used primarily for the

startup script, or in the script command line. Starting a script using ALT+O may

be done specifying both the name of a script and a number of parameters, sepa-

rated with spaces. Internal calls to scripts may use the same facility, for example:

CALL "MYSCRIPT P1 P2 P3 P4"

In this case $PARAMETER will contain the string "P1 P2 P3 P4", while $P1

will contain "P1", $P2 will contain "P2", and so on.

 Variables

Gallagher & Robertson Glink: Script Reference 19

The $STATUS variable

The $STATUS variable contains a number of things that have to do with the

current emulator status. Not all of these are relevant for all modes, but all are

returned with some value or another whether they are meaningful or not. You are

therefore guaranteed that the position of each indicator inside the string returned

will be independent of the particular emulation mode that is active. These posi-

tions are also guaranteed not to change on future versions of the emulator.

Single-character positions representing values that are ON or OFF are returned as

either Y or N. The following data may be found:

Pos Contents

1-5 Abbreviation for current mode

 (VIP, V77, DKU, D7102, 3270, 5250, 3151, ANSI, VT220, VIEW,

TTEL)

6 Echoplex mode

7 Insert mode

8 Roll mode

9 Local mode

10 Data capture active

11 Graphics mode

12 Auto LF mode

13 Keyboard locked

14 VIP mode (C=char, T=text, F=form)

15 TX-RET mode

16 Auto tabbing mode

17 Print logging active

18 VIP block mode active

Pattern variables

Another set of twenty variables is available. These are called pattern variables,

and are used to 'monitor' the data coming from the host machine. Note that they

are entirely separate from the normal variables mentioned above, and have their

own special commands. To distinguish pattern variables from normal variables,

they use a different prefix, the exclamation mark (!). Assignment to a pattern

variable is done using the PATTERN command, like this:

PATTERN !1 "--more--"

Variables

20 Glink: Script Reference Gallagher & Robertson

Patterns may be referred to either using IF statements or WHEN statements. The

IF can be used after any other statement (like RECEIVE or MATCH) that waits

for input from the line to test whether or not the specified pattern was seen. The

WHEN statement is used to specify some action that should be performed when-

ever the specified pattern is seen. See the description of these specific commands

for more details. As for the normal variables, you may leave out the '!' prefix (in

that it should be clear from the context that a pattern variable is being used) but

we suggest that you use it for readability.

Also in the same way as for normal variables, indirection may be used, by

replacing the '!' prefix with an underline character (_). When you do this the

contents of the variable with the number you specify will be used as the number

of the pattern to set. For example, the sequence of commands:

ASSIGN %3 "7"

PATTERN _3 "--more--"

WHEN _3 SEND " "

will set pattern number 7 to the value of "--more--" and in the same way the

WHEN statement will refer to pattern 7, in that the %3 variable contains the

number 7.

File variables

A third type of variable is used for yet another set of commands, allowing you to

perform various manipulations with files from your script. Up to 9 files may be

referenced simultaneously, and again numbers are used to refer to these. In this

case the number-sign (#) prefix is used to distinguish file variables from other

types of variable. For example:

IF EOF #2 GOTO ENDPROC

directs the script to continue processing at the label 'ENDPROC' if all the data

on file number two has been processed. Detailed descriptions of the file com-

mands will be found in later chapters.

The number-sign type of variable is also used to denote a DDE connection

number. There may also be up to 9 of these, in addition to the 9 files.

 Commands by category

Gallagher & Robertson Glink: Script Reference 21

Script command categories

Alphanumeric handling

ADD adds two numbers
CALC calculates the result of a complex formula
CMPNUM compares two numbers
COMPARE compares two strings
CONCAT concatenates two strings
DIVIDE divides two numbers
EXTRACT extracts one parameter from a delimited string
FILTER removes selected characters from a string
FIX converts control chars to display format
GETLENGTH gets length of a script variable
LCASE converts a variable to lower case
MULTIPLY multiplies two numbers
REPLACE replaces all occurrences of one string with another
SCAN checks for the presence of one string in another
SPLIT splits a string by contents
SUBRIGHT picks right-hand portion of string
SUBSTR picks portion of a string
SUBTRACT subtracts two numbers
TRIM Trims leading and/or trailing spaces and controls
TRUNCATE formats a number
UCASE converts a variable to upper case

Compiler and debugging commands

#ELSE introduces alternate compilation
#ENDIF ends conditional compilation
#IFDEF starts conditional compilation
#IFNDEF starts conditional compilation
DEBUG turns line debugging on or off
DEFINE defines alternate name for script variable
INCLUDE includes source code from another file

Commands by category

22 Glink: Script Reference Gallagher & Robertson

OBJECT defines target file for compiled script
STRACE turns debugging mode on or off
TRACE traces line numbers

Configuration control

CFIX is an expert command for config changes
CFXW is an expert command for config changes
CHANNEL sets logical communications channel
CONFIG changes to another configuration
CRDB reads a byte from configuration
CRDW reads a word from the configuration
CREAD reads several bytes from configuration
CRLF switches added line feeds
CTYPE sets comms interface type
ECHO turns echoplex mode on and off
EIGHTBIT sets 8-bit mode on and off
LOCAL sets local mode on or off
MDIAL sets modem dial string
MINIT sets modem init string
MODE switches between different emulations
MONO sets monochrome mode on/off
PACE sets line pacing
PARITY sets the communications parity
PORT sets the communications port
ROLL toggles roll mode
SET sets one of many different configuration options
SETMACRO sets the value for a keyboard macro
SPEED sets the communications line speed
STRIP sets parity stripping on/off
TSMDIR sets TSM8/TCS forms directory

 Commands by category

Gallagher & Robertson Glink: Script Reference 23

Control structures

* introduces a comment
BEGIN starts a group of statements (IF)
CALL executes another script as a subroutine
CASE defines one alternative for 'switch' construct
CHAIN gives control to another script
CSWITCH is a 'C' style switch statement
DEFAULT defines default action in 'switch' construct
ELSE is an alternative statement for IF
ENDIF ends a group of statements (IF)
ENDSWITCH defines end of 'switch' construct
ENDWHILE defines end of 'while' construct
EXITSWITCH exits from current 'switch'
GOSUB performs a subroutine
GOTO continues processing from another place in the script
HALT stops the emulator
IF introduces various forms for testing
LABEL defines a place you can GOTO or GOSUB
NEW Start a new script at top level
POPUP removes last return from call stack
QUIT stops the script
RETCALL returns directly to last CALL
RETURN returns from a GOSUB or a CALL
SWITCH is a Pascal-style switch statement
WHILE defines a program loop

Dial directory

DCHANGE modifies an entry in the dial directory
DFIND finds entry in the dial directory
DIAL dials a number in the dial directory
DMARK marks an entry in dial directory
DREAD reads specified number from dial directory
DUNMARK unmarks a number in the dial directory
MANDIAL performs a manual dial
RDIAL does a queued dial

Commands by category

24 Glink: Script Reference Gallagher & Robertson

File I/O commands

FCLOSE closes a file
FLOC returns the current line number in a text file
FOPEN opens a file
FPOS positions to a given line in a file
FRDBLOCK reads a block from a file
FRDCHAR reads a character from a file
FRDLINE reads a line from a file
FSEEK positions to a given location in a file
FSIZE gets the size of a file in bytes
FSKIP skips lines on a file
FWTBLOCK writes a block to a file
FWTLINE writes a line to a file
GPROFILE reads parameters from INI files
PPROFILE writes parameters to INI files

File transfer and control

BINARY sets and resets the binary mode of Kermit or FTP
CAPTURE toggles data capture mode
DOWNLOAD sets download directory name
FTP controls FTP transfers and related procedures
GETFILE starts a file transfer from the host to the PC
LOG turns print logging mode on and off
PUTFILE starts a file transfer from the PC to a host
SERVER sends a command to a Kermit server or starts a local

Kermit server
UPLOAD sets the upload directory

 Commands by category

Gallagher & Robertson Glink: Script Reference 25

Host interaction commands

BREAK sends a break
CONNECT connects the physical communications line

(use NETCONNECT for normal network interfaces)
CONVERSE is a combined receive and sndline
DISCONNECT disconnects the physical communications line

(use NETDISCONNECT for network interfaces)
DPATTERNS resets all patterns
DWHENS deletes all active 'WHEN' statements
FCODE sets a function code
FLUSH empties the input buffer
GWCONNECT makes a connection through a gateway
ISOCONNECT initializes ISO connect menu
LINE simulates line input
MATCH waits for a pattern to arrive
NETCONNECT connects to network host
NETDISCONNECT disconnects from a network host
ONLINE waits online
PATTERN defines a pattern
PREMOTE sets remote PAD parameters for X.25
PSET sets PAD parameters for X.25
RCVLINE receives from host into variable
RCVTURN waits for turn (on interfaces that use turn)
RECEIVE waits for a defined string from the host
RECS waits for string (non-contiguous)
SEND sends a message to the host with no terminator
SNDLINE sends a message and a terminator to the host
TRANSMIT sends a message without local emulation
TRNLINE sends a terminated message without local emulation
WHEN defines an action for when pattern is received

Commands by category

26 Glink: Script Reference Gallagher & Robertson

Key definitions and handling

ABORT defines script abort key
ENABLE defines script 'enable' key
GETKEY gets one of a defined set of characters from keyboard
KEYBOARD loads a transliteration file
KEYKERMIT sets the Kermit transliteration file
KEYS emulates a key sequence
LAYOUT defines keyboard layout file
ON does key reprogramming, error/timeout actions
PAUSE defines pause key for script
PERFORM performs internal emulator functions
RKEY resets an ON KEY action for one key
TCKEY (Atlantis V8 only) sends a TCU function key
WKEY waits for any keypress

Menu handling

DOMENU executes a user menu
MENU defines start of a user menu
MOK adds an 'OK' button to a script menu
MOP defines a menu line and action
MOPC defines a menu line with activating key and action
MOPTION sets the cursor position inside a menu
MPOS defines where to display a menu on the screen
MTEXT defines a menu text line
NOMENU removes all active menus
REMENU reactivates currently displayed menu
UNMENU removes one active menu

NOTE
These script commands are left for backward compatibility. More
specialized menu and dialog box commands are available in the
Windows-specific list below.

 Commands by category

Gallagher & Robertson Glink: Script Reference 27

Screen and cursor control

BEEP sounds the alarm
CLEAR clears the screen
CURSOR turns cursor on and off, or changes its shape
DSCREEN dumps screen to file
EMULATE emulates a string locally
FIND Finds a specified string on the screen
GETWORD collects a word from the main or scrollback screen
HOST inserts host name in status line
MESSAGE sends a message to the terminal
NAME inserts user name in status line
POS moves the cursor to a set position
RATR reads attributes from a position on the screen
RFORM reads a field from a form
RSBK reads characters from the scrollback buffer
RSCR reads characters from screen
SCREEN switches screen updates on or off
SECURE removes access to potentially sensitive data
SHOW shows a message locally, no CRLF
WELCOME displays the welcome menu

System-related commands

APPEND appends one file to another
CD changes the working directory
COPY copies one file to another
DOS executes a program
DOSN executes a program
ERASE erases a file
EXECUTE executes a program
EXISTS tests for existence of file or directory
FNEXT finds next matching file
FSEARCH finds first matching file
MD creates a directory
PRINT prints the specified string
RD deletes a directory
REN renames a file
UVTI starts a UVTI shell

Commands by category

28 Glink: Script Reference Gallagher & Robertson

Timing commands

DELAY waits a number of seconds
DTENTHS delays, in tenths of a second
DTIME delays until a specified time
ERRORGOTO defines a place to GOTO when errors occur
IDLE waits for host to remain idle for a defined period
RESET resets error/timeout actions
TIMEOUT defines how long a RECEIVE should wait

User input commands

INFILE collects file name from the user
INPC collects user input, cursor placed at end of input
INPUT collects user input
INVISIBLE collects user input, echoing asterisks or question

marks
PICK picks a file using the file display

Variable handling commands

ASSIGN puts a value in a variable
CXRESTORE restores a script context
CXSAVE saves a script context
DVARIABLES resets all variables
GETDATE formats and places today's date into variable
GETENV gets contents of environment string
GETLENGTH obtains length of a script variable
GETTIME formats and places time of day into variable
GETVALUE converts from binary format
GPARAM sets the global parameter value
PARAM sets the script parameter

 Commands by category

Gallagher & Robertson Glink: Script Reference 29

Windows-specific commands

ACTIVATE passes control to another Windows application
ADDMENU adds a user entry to the Windows menu bar
ADMSHELL executes a command as administrator/alternate user
BUILDMENU defines a new entry in the Windows menu bar or adds

a submenu to the current menu
BUTTON defines a button for the button bar
CONTEXT Adds a user entry to the context (right mouse button)

menu
DBOX starts a dialog box definition
DDEADVISE asks for notification of changed data
DDECLOSE closes a DDE connection
DDEEXECUTE executes a DDE command
DDENAME sets the DDE application name
DDEOPEN opens a DDE connection
DDEPOKE pokes a DDE value
DDEREQUEST requests a DDE data item
DELMENU deletes a user menu bar item
ENDBUILD ends a Windows submenu defined with the

BUILDMENU command.
FNDEXEC Provides the name of the associated executable
FVERSION Extracts the program version number
ICON defines default icon to display when minimized
ISSERVICE Used to specify that Glink is running as a service
MBAR enables or disables items on the menu bar
MCURSOR sets mouse cursor shape
MFONT selects the font to use when displaying menus
MOVEWINDOW moves and/or resizes the emulator window
MVSCROLL moves and/or resizes the scrollback window
MSGBOX displays a message in a separate window
OEM specifies that script is in OEM character set
OLE provides OLE automation controller functionality
PLAY plays a waveform file
SEPMENU adds a horizontal separator to a user menu
SHELL executes a command or associated command
STITLE sets the caption for the scrollback window
TITLE sets the Windows caption
URLSHOW invokes your browser to display a URL
WINDOW defines how the main screen should be displayed

Commands by category

30 Glink: Script Reference Gallagher & Robertson

Commands for backwards compatibility

The following commands are supported for compatibility with previous releases

of the software:

ADIAL dials a given entry only once
GETNAME gets login name from dial directory
GETPASS gets password from dial directory
GETX gets screen X coordinate
GETY gets screen Y coordinate

 Commands

Gallagher & Robertson Glink: Script Reference 31

Script commands

In this chapter, the following conventions are used in the description of the

syntax of the different script commands:

<... > enclose syntactical elements

{...|...} enclose lists of alternative options

[...] enclose optional items

[...[...]] enclose variable length lists of optional items

<%var> is used where use of a script variable is mandatory

<#file id> is used where use of a file identifier is mandatory

<!pattern> is used where use of a pattern number is mandatory

<#dde> is used where use of a DDE connection number is manda-

tory

The #ELSE directive

Syntax: #ELSE

The #ELSE directive introduces a set of script commands that will either be

compiled or ignored, depending upon the previous #IFDEF or #IFNDEF

directive.

The #ENDIF directive

Syntax: #ENDIF

The #ENDIF directive marks the end of a group of script commands that have

been conditionally compiled as a result of a previous #IFDEF or #IFNDEF

directive.

Commands

32 Glink: Script Reference Gallagher & Robertson

The #IFDEF directive

Syntax: #IFDEF {i.j.k[x]|$VAR|DOS|WINDOWS|MAC}

The #IFDEF directive introduces a group of script commands that will either be

compiled or ignored, depending upon the argument that you specify. The follow-

ing may be used as arguments to the #IFDEF directive:

i.j.k True for all releases from i.j.k and upwards

i.j.kx True for all releases from i.j.k beta x and upwards

$var True if $var is a valid internal variable

DOS True for the DOS version

MAC True for the Macintosh version

WINDOWS True for the Windows versions

WIN32 True for the Windows 32-bit version

The group of commands that should be compiled or ignored is terminated with an

#ENDIF directive. The group may also optionally contain an #ELSE directive,

thus allowing you to compile one of two different sets of commands, depending

upon the Glink release or the version of the emulator being used. #IFDEF

directives may be nested to any level.

For example, to include a group of statements that should only be compiled for a

Win32 platform, and only if the version of Glink being used is at least 7.1.0, you

could use:

#IFDEF WIN32

#IFDEF 7.1.0

... script statements ...

#ENDIF

#ENDIF

See also: #ELSE, #ENDIF, #IFNDEF.

 Commands

Gallagher & Robertson Glink: Script Reference 33

The #IFNDEF directive

Syntax: #IFNDEF {i.j.k|DOS|WINDOWS|MAC}

The #IFNDEF directive introduces a group of script commands that will be

compiled or ignored depending upon whether the condition named is true or false

(in the opposite sense to #IFDEF). The commands following #IFNDEF are only

compiled if the condition is not true.

The ABORT command

Syntax: ABORT {<keyname>|NONE}

A script that is executing may normally be terminated at any time by pressing the

ESC key. This may not always be desirable, and the ABORT command allows you

to move this function to any other key, or indeed disable the function altogether

(this last for situations where you wish to avoid the user being able to terminate

the script you are writing).

For a list of valid keynames, refer to the KEYS command. Note that the ABORT

key has an effect not only for the current script, but also for all subsequent scripts

until another ABORT command is executed. In other words, if you specifically

want the user to be able to abort the script you are writing using the ESC key then

you should include:

ABORT Esc

somewhere at the start of your script.

The ACTIVATE command

Syntax: ACTIVATE <window>

This command allows you to pass control to another window in the Windows

environment. The parameter you provide should specify the title of the window

to which you wish to pass control, for example:

ACTIVATE "Notepad - MESSAGE.TXT"

Commands

34 Glink: Script Reference Gallagher & Robertson

For advanced users, you may also activate a window based on the Windows class

name of the window you wish to activate. Do this by using a '#' prefix in front

of the class name, for example:

ACTIVATE "#Progman"

On Win98 and above some programs may not accept receiving the input focus.

The ADD command

Syntax: ADD <%var> <number>

The ADD command allows you to compute the sum of two numbers. The first

parameter must be a script variable, while the second may be a script variable or

a constant. The result of adding the two numbers is placed in the script variable

specified first. For example:

ADD %3 1

adds 1 to the present contents of the %3 variable, leaving the result in %3. Note

that the result may be stored in exponential format to keep maximum precision. If

you need to print a result that may be outside the range 0.01 to 32767, you can

use the TRUNCATE command to format the number in a more suitable way. If the

addition can be performed correctly then the OK variable is set true. If not

(because one of the two operands was non-numeric) then it's set false.

The ADDMENU command

Syntax: ADDMENU <scriptname> <string>

The ADDMENU command allows you to add a new entry to the menu bar. The

first parameter must be the name of a script file that will be executed when the

menu item is chosen, while the second is the text that should be displayed in the

menu. The first time such a command is executed, a new entry is added to the

main menu bar, which is given the name "User" (this text is defined in the Glink

string resources and may be changed by editing the resources if desired). The text

may define a shortcut key in the usual way by prefixing the shortcut letter with an

ampersand (&). For example:

ADDMENU "LOGIN.SCR" "&Log into host"

 Commands

Gallagher & Robertson Glink: Script Reference 35

would add an entry called 'Log into host' with a shortcut 'L'. When this entry is

selected by the user, Glink will attempt to execute the script called LOGIN.SCR.

For more advanced use of the menu bar, see the BUILDMENU command on page

37. If you wish to add horizontal separating lines between some of the items

defined with ADDMENU this may be done using the SEPMENU command.

The user-defined menu may be deleted at any time using the DELMENU com-

mand.

The ADMSHELL command

Syntax: ADMSHELL <command/file>

This command executes an application, or alternatively the application that is

associated with the file type of the specified file. It will also invoke ‘run as’

functionality so that you may specify an administrator on whose behalf the

application will run, otherwise it is equivalent to the SHELL command. Typically

you will be allowed to enter login information in a popup window for the user

that will run the command.

The APPEND command

Syntax: APPEND <source name> <destination name>

This command allows you to append the contents of one file to another without

the inconvenience of having to use an external utility. If the destination does not

exist then the source file will simply be copied.

The ASSIGN command

Syntax: ASSIGN <%var> <string>

Glink scripts allow you to define up to 99 different 'variables', numbered from 1

to 99. These may be used anywhere where you could have used a text string. To

assign a value to variable number 13 you could for example use a command like:

ASSIGN %13 "Hello, how are you?"

Commands

36 Glink: Script Reference Gallagher & Robertson

You can then send this string by using the variable number with a percent sign in

front. For example:

SEND %13

would send the string we just defined.

The BEEP command

Syntax: BEEP

This command simply sounds the local alarm (unless you have set the option in

the configuration menus, which disables it). No parameters are needed.

The BEGIN command

Syntax: BEGIN

This is used to mark the start of a group of statements that are to be executed

following an IF statement. Normally only the first statement following the IF

statement will be executed if the test succeeds, but use of a group of statements

delimited with BEGIN and ENDIF overrides this. For example:

IF (%8 EQ "X") BEGIN

 MESSAGE "Please wait..."

 GOSUB Sub1

ENDIF

The BINARY command

Syntax: BINARY {ON|OFF}

This command sets the transfer mode for a Kermit orFTP transfer. BINARY ON

will set the next transfer into binary mode, while BINARY OFF will set it to text

mode.

 Commands

Gallagher & Robertson Glink: Script Reference 37

The BREAK command

Syntax: BREAK

This command will send a break signal to the host machine.

The BUILDMENU command

Syntax: BUILDMENU <string>

This command extends the functionality provided by the ADDMENU command. It

allows both placing of additional entries into the main menu bar and building of

submenus connected to items in the top-level menus you have defined. A

BUILDMENU used at the top level will cause a new entry to be added to the main

menu, while a BUILDMENU enclosed inside a BUILDMENU / ENDBUILD pair

defines a submenu. For example:

BUILDMENU "MyMenu"

 ADDMENU "SCRIPT1" "First"

 BUILDMENU "Second"

 ADDMENU "SCRIPT21" "Second/1"

 ADDMENU "SCRIPT22" "Second/2"

 ENDBUILD

 ADDMENU "SCRIPT3" "Third"

ENDBUILD

will add a new entry in the menu bar called MyMenu. The menu will consist of

three items, First, Second and Third. The First and Third items will execute

SCRIPT1 and SCRIPT3 directly, while the Second item will produce a sub-

menu with two selections for executing SCRIPT21 and SCRIPT22 respec-

tively. A new group starting with another BUILDMENU immediately after this

one would now add a separate item to the main menu bar.

There is a limit of nine levels of nesting of menus, and an absolute limit of 50

menu entries for all defined menus.

Commands

38 Glink: Script Reference Gallagher & Robertson

The BUTTON command

Syntax: BUTTON <number> <keystroke> <string>

This command defines a button for the button bar at the bottom of the screen,

with the specified <number> (48 maximum). If the number is larger than the

number of buttons currently being displayed then the button bar will be expanded

to this number of buttons. If the command makes it impossible to display all texts

in the currently displayed buttons, then an additional row will be displayed to

make room for the text (up to a maximum of four).

<keystroke> can be any valid keystroke as defined in the explanation of the

script KEYS command. For example, to define a button with the same function as

the F1 function key you would use:

BUTTON 1 F1 "F1"

Additionally you can use the format MACRO-n to associate the button with

macro number 'n'. This allows you to define specific actions for buttons as

opposed to duplicating the action of a particular key, using something like:

SETMACRO 21 "pwd^!"

BUTTON 1 MACRO-21 "PWD"

This type of definition can be extended (for example) to running scripts:

SETMACRO 22 "^*LOGIN.SCR"

BUTTON 2 MACRO-22 "Login"

You can set the total number of buttons specifically using the command:

SET BUTTON NUMBER number

Setting the number of buttons to zero will remove the button bar altogether. If

you set the number of buttons to less than the number of rows currently being

displayed then the number of rows displayed will be reduced correspondingly.

 Commands

Gallagher & Robertson Glink: Script Reference 39

You can also set the number of rows of buttons to display using the command:

SET BUTTON ROWS number

(This command will not be respected if it would result in inability to display all

texts in the buttons).

If you wish to associate a help text with the button in the same way as the

predefined help texts for the toolbar, then you may do this using:

SET BUTTON HELP number "text"

The text will be displayed at the left-hand end of the status bar, and also in a

small popup help window, if such windows are enabled. The same text will be

displayed in each of these. If you wish to use different texts then specify these

with a colon separating the two. For example:

SET BUTTON HELP 3 "Logout:Log out of the host machine"

This command will provide the text "Logout" in the popup help window, but

show the longer text in the status bar. You may also change the font used to

display the text in the buttons with the SET BUTTON FONT command, for

example:

SET BUTTON FONT "Courier New Bold" 16

Commands

40 Glink: Script Reference Gallagher & Robertson

The CALC command

Syntax: CALC %n "formula"

This will evaluate the specified formula and place the result in the %n variable.

The formula is evaluated using normal algebraic rules (exponentiation first, then

multiplication and division, then addition and subtraction) and parentheses may

be used to override those rules. The full list of available operators is as follows:

a + b (addition)

a - b (subtraction)

a * b (multiplication)

a / b (division)

a ^ b (exponentiation)

a \ b (modulus)

a | b (logical OR)

a & b (logical AND)

a # b (logical XOR)

a > b (logical shift right)

a < b (logical shift left)

!a (logical NOT)

All logical operators carry with them an implicit truncation operation if the terms

involved are non-integral. Remember that the ^ sign has a special meaning in

scripts so you will need to write ^^ as your exponential operator in practice. A

number of standard functions are also supplied:

ABS(x) returns the absolute value of x

ARCTAN(x) returns the arctangent of x

COS(x) returns the cosine of x (x specified in radians)

EXP(x) returns the exponential of x

FRAC(x) returns the fractional part of x

LN(x) returns the natural logarithm of x

LOG(x) returns the logarithm base 10 of x

PI returns the value of pi

RAND(x) returns a random number less than x

ROUND(x) rounds x to the nearest integer

SIN(x) returns the sine of x (x specified in radians)

SQRT(x) returns the square root of x

TRUNC(x) returns the integer part of x

 Commands

Gallagher & Robertson Glink: Script Reference 41

If an error should occur during the evaluation of a formula then the script OK

variable will be set to FALSE and you will also find the location of the error

(offset into the formula) in the built-in $CERR variable. Errors in CALC com-

mands will in general not cause a script to halt when such errors occur.

Variables specified using the '%' and/or '_' prefixes may be included directly

in the formula so long as the numeric variable identifier is used. If you wish to

use a DEFINEd value for the variable identifier then you must use parentheses to

separate the elements of the formula. For example:

CALC %1 "%2+%3"

is acceptable, but

CALC %a "%x*%y"

is not, and must be written as:

CALC %a (%x "*" %y)

(For the technically inclined, this is because the % sign is treated as a unary

operator by the expression evaluation mechanism, and therefore needs a numeric

argument. While this precludes the use of compile-time constants, it does open

possibilities for other constructions - for example something like

"%(trunc(rand(20))+1)")

The CALL command

Syntax: CALL <scriptname>[!label]

This command will transfer control to another script file. However, Glink will

remember where you were in your original file and when the CALLed script

executes a RETURN statement, processing will continue from the next command

after the CALL. The CALL command needs one item of information, the name of

the script to give control to:

CALL "SCRIPT2.SCR"

Commands

42 Glink: Script Reference Gallagher & Robertson

The whole pathname must be provided (except the 'SCR' extension, which is

optional). If the script you are calling is in source format, you may additionally

call it using the following format:

CALL "SCRIPT3.SCR!label"

In this case, execution of the script will commence from the label you have speci-

fied rather than from the beginning of the script. Otherwise note that all normal

conventions that may be used when starting a script apply; see the section on

Starting a script earlier in this manual, on page 2.

If the name of the script file to be called contains embedded spaces then you will

need to supply an extra set of quotes around the name:

CALL "'MY SCRIPT2.SCRGL'"

This also allows a distinction between calling a script with parameters and calling

a script with embedded spaces in the file name, or indeed doing both at the same

time:

CALL "'MY SCRIPT2.SCRGL' param-1 param-2"

The CAPTURE command

Syntax: CAPTURE {ON|OFF}

This command toggles capture mode (same as the interactive ALT+V command).

Captured output is placed in the current capture file. The name of this file may be

changed using the initial command 'GETFILE ASCII filename' to start

the first capture.

The CASE command

Syntax: CASE <string>

The CASE command is used to specify one possible alternative inside a SWITCH

or CSWITCH construct. See the documentation for SWITCH and CSWITCH for

details. It takes a single parameter, providing the string with which to compare.

For example:

 Commands

Gallagher & Robertson Glink: Script Reference 43

CASE "1"

This specifies that the following statements should be executed for any variable

specified in the SWITCH or CSWITCH statement that starts with the character

'1'. If you want to check for exactly '1' then specify "1 " with a trailing space in

the CASE statement.

The CD command

Syntax: CD <directory-name>

The CD command allows you to change the working directory without having to

use the command. IF OK may be used to test whether or not the directory

change was successful. For example:

CD "\WORK"

Note that many of the internal variables representing directories include a trailing

backslash (\) so as to let you execute commands including those directories as

prefixes to file names. For example, a construction such as ($DOWNLOAD

"FILENAME.EXT") which works equally well whether the download directory

is set or not. To use such directories with the CD command remember that you

can use the command convention of '.' to represent the current directory:

CD ($DOWNLOAD ".")

This again works equally well whether or not the download directory is actually

set.

Commands

44 Glink: Script Reference Gallagher & Robertson

The CFIX command

Syntax: CFIX <location> <byte value>

This command may be used to change various parameters in the configuration

information (in memory) that are not otherwise easy to change using the normal

script commands. <location> is the offset into the configuration information

and <byte value> is a single byte that is to be placed there. The format of the

configuration file is provided in the Configuration file format appendix to this

guide, on page 227. Care should be exercised in changing the contents of the con-

figuration file in that invalid contents in some of the fields may produce unpre-

dictable results. Note also that changing the contents of the configuration file will

in many cases not have an immediate effect but will only be acted upon if the

configuration information is saved and reloaded.

The CFXW command

Syntax: CFXW <location> <word value>

This command is exactly the same as the CFIX command, but is used for

changing values in the configuration file that are stored using two bytes rather

than one.

The CHAIN command

Syntax: CHAIN <scriptname>[!label]

This command also allows you to give control to another script file, but unlike

the CALL command, control will not be returned to the original script. It is how-

ever perfectly OK to do a CALL from script one to script two, a CHAIN from

script two to script three, and then a RETURN from script three. This will take

you back to the original CALL in script one. The CHAIN command looks just like

the CALL command:

CHAIN "SCRIPT4.SCR"

 Commands

Gallagher & Robertson Glink: Script Reference 45

Otherwise note that all normal conventions that may be used when starting a

script apply; see the section 'Starting a script' on page 2. See the script CALL

command for examples of using script names with embedded spaces and/or using

additional parameters.

The CHANNEL command

Syntax: CHANNEL <number>

This command allows you to set the logical communications channel or port for

those network interfaces that use one. This includes the Eicon NABIOS, PC-

NFS/Wollongong and Ungermann-Bass (interrupt 6B) interfaces.

The CLEAR command

Syntax: CLEAR

This command allows you to clear the screen without sending any data to the

other end of the communications line.

The CMPNUM command

Syntax: CMPNUM <string1> <string2>

This command compares the values contained in two strings, both of which are

interpreted as numeric values. If the strings do not both contain numeric values

then the OK variable is set false (see the IF command) and the comparison per-

formed as though the invalid value or values contained zero. If they both contain

valid numbers, then the comparison is done and the result saved so that you may

use the IF command to test what happened. For example, to check whether the

value in script variable number 5 is greater than 10, you could use something

like:

CMPNUM %5 "10"

IF GT GOTO GREATER

Note that such comparisons may be included directly in IF statements, see the

description of the IF command (page 92) for more information.

Commands

46 Glink: Script Reference Gallagher & Robertson

The COMPARE command

Syntax: COMPARE <string1> <string2>

Similar to the CMPNUM command, this command allows you to make a compa-

rison between any two strings, but interpreted with their ASCII values rather than

as numbers (in other words, "100" would be less than "20"). Note that such

comparisons may be included directly in IF statements, see the description of the

IF command on page 92 for more information.

The CONCAT command

Syntax: CONCAT <%var> <string>

This command will concatenate a string to a variable, thus allowing you to build

longer strings from smaller components. The first parameter must be one of the

script variables, while the second may be either a literal or a script variable.

Examples:

CONCAT %1 "^M"

adds a CR character to the present value of variable 1.

CONCAT %1 %5

adds the current value of variable 5 to the end of whatever is in variable 1. Note

that when you just need to use the result of concatenating two strings in another

command, this can be done directly, for example:

ERASE ($GLUSE "WORKFILE")

This erases the file named WORKFILE in the Glink user directory, and saves you

using the CONCAT command to 'glue together' the two parts of the full pathname

you want to use for the ERASE command.

 Commands

Gallagher & Robertson Glink: Script Reference 47

The CONFIG command

Syntax: CONFIG {<configuration filename>|SAVE}

This command allows you to switch to another configuration file. The configu-

ration file must be contained in the Glink user directory, and the full name (not

just the extension) must be supplied. For example:

CONFIG "GLINK.CF1"

The CONFIG SAVE variant may be used to save the current configuration back

to disk.

If the configuration cannot be loaded then the emulator will reset to the default

options that were delivered with the system, and the script OK variable will be set

false. Note that the $CONFIG internal variable may be used to save the current

configuration name before you load a new setup, so that you may restore the

current configuration if the load should fail:

ASSIGN %1 $CONFIG

CONFIG "NEW.glinkconfig"

IF NOT OK CONFIG %1

The CONNECT (modem) command

Syntax: CONNECT

This command 'connects' the communications line by raising the DTR signal. It

would normally only be used in a situation where there was a preceding

DISCONNECT command. Note that to connect on normal network interfaces you

should use the NETCONNECT command.

Commands

48 Glink: Script Reference Gallagher & Robertson

The CONTEXT command

Syntax:

CONTEXT [MAIN | SCROLLBACK] ADD <script> <string>

CONTEXT [MAIN | SCROLLBACK] DELETE <string>

CONTEXT [MAIN | SCROLLBACK] SEPARATOR

The CONTEXT command allows you to use new entries in the context menus (the

menus displayed when the right mouse button is pressed) in the main and scroll-

back windows. <script> must be the name of a script file that will be executed

when the menu item is chosen, while <text> is the text that should be displayed

in the menu itself. The entry will be added at the end of the menu. The text may

define a shortcut key in the usual way by prefixing the shortcut letter with an

ampersand (&). For example:

CONTEXT MAIN ADD "LOGIN.SCR" "&Log into host"

would add an entry called 'Log into host' with a shortcut 'L'. When this entry is

selected by the user, Glink will attempt to execute the script called LOGIN.SCR.

Note that if you need to use the actual screen position that was clicked with the

mouse then its coordinates are available in the $CX and $CY built-in variables.

If you wish to add horizontal separating lines between some of the items in the

context menu this may be done with the command:

CONTEXT MAIN SEPARATOR

Any of the entries in the menu may be deleted at any time using the command:

CONTEXT MAIN DELETE "text"

This will delete the entry that uses text in its entry (this may also be used to

delete entries from the standard menu if you should choose to do so). If the entry

deleted is immediately preceded by a separator then the separator will also be

removed.

All of the above examples may be used to manipulate the scrollback context

menu rather than the main context menu, simply by replacing the keyword MAIN

with the keyword SCROLLBACK. For example:

CONTEXT SCROLLBACK ADD "PWORD.SCR" "Paste to &Word"

 Commands

Gallagher & Robertson Glink: Script Reference 49

The CONVERSE command

Syntax: CONVERSE <receive string> <send string>

This command is a combination of the RECEIVE and SNDLINE commands.

Two strings are provided, and the script will wait for the first one to arrive, then

transmit the second. For example:

CONVERSE "Name? " "Mike"

Note that the second string is sent with SNDLINE, not SEND. Timeouts are

effective in just the same way as for a normal receive while the emulator is

waiting for the first string to arrive. Also, if a SET IDLE command is active

then Glink will wait for the line to become idle for the specified time before

sending the reply (this may be found necessary on half-duplex lines).

The COPY command

Syntax: COPY <source name> <destination name>

This command allows you to copy the contents of one file to another without the

inconvenience of having to use an external utility. IF OK may be used to test

whether or not the copy operation was successful.

The CRDB command

Syntax: CRDB <%var> <location>

This command can be used to read a byte from the configuration file into a script

variable. This may be used in specialized applications that need to check the cur-

rent status of some configuration option that is not available from the script

language in any other way. The byte is inserted into the script variable in decimal

format. See the Configuration file format appendix to this guide (page 227) for

more information and examples of usage of the CRDB command. Note that the

CRDW script command may be used to read data that is stored in the

configuration file as a double-byte value.

Commands

50 Glink: Script Reference Gallagher & Robertson

The CRDW command

Syntax: CRDW <%var> <location>

This command can be used to read a word stored in the configuration file as two

bytes into a script variable. This may be used in specialized applications that

need to check the current status of some configuration option that is not available

from the script language in any other way. The word is inserted into the script

variable in decimal format. See the Configuration file format appendix to this

guide (page 227) for more information and examples of usage of the CRDB

command.

The CREAD command

Syntax: CREAD <%var> <location> <length>

This command can be used to read a byte or sequence of bytes from the

configuration file into a script variable. This may be used in specialized applica-

tions that need to check the current status of some configuration option that is not

available from the script language in any other way. Note that if the command is

used to read bytes that are encoded in the configuration as binary values, then this

is the way they will be provided in the %n variable. If a numeric value corres-

ponding to a particular byte is what you need then CRDB should be used instead.

The format of the configuration file and some script examples are provided in the

Configuration file format appendix to this guide, on page 227.

The CRLF command

Syntax: CRLF {ON|OFF}

This is equivalent to the Auto LF In option in the emulator setup menu. When

you use CRLF ON, the emulator will add linefeed characters to all CR characters

received from the line. With CRLF OFF it does not. The option should be used

in cases where the host appears to be writing data on the same line all the time.

 Commands

Gallagher & Robertson Glink: Script Reference 51

The CSWITCH command

Syntax: CSWITCH <string>

The CSWITCH command marks the start of a switch construct. These are used to

test the contents of a script variable (or built-in variable) for one of several alter-

natives. A basic example is provided in the description of the SWITCH com-

mand, and applies equally to CSWITCH. The only difference between SWITCH

and CSWITCH is the way that the CASE statements are handled. In a SWITCH

construct, as soon as a matching CASE has been found and executed, control

passes to the ENDSWITCH statement, while in a CSWITCH construct, this

happens only when an EXITSWITCH is used specifically. Even when a matching

CASE is found, execution proceeds through the remaining CASE statements until

either ENDSWITCH or EXITSWITCH is found. This means that EXITSWITCH

must be provided specifically for those CASEs that are to be handled in the same

way as for SWITCH.

An example will make this clear:

CSWITCH %1

 CASE "A"; MESSAGE "This is only executed for A"

 CASE "B"; MESSAGE "This is done for A and B"

 CASE "C"; MESSAGE "And this for A, B and C"

 EXITSWITCH;

 CASE "D"; MESSAGE "While this is done for D only"

ENDSWITCH

The CTYPE command

Syntax: CTYPE <interface name>

This command allows you to set the communications interface to be used. Allow-

able options here are:

AV8 Atlantis Bull TSA V8 DLL
ETGX Eicon NABIOS / TGX
DGA G&R / DGA (Direct GCOS Access)
FPX Cirel FPX / VTI
NABIOS Eicon NABIOS
NETBIOS NetBIOS (raw)
NETGAR NetBIOS (G&R)

Commands

52 Glink: Script Reference Gallagher & Robertson

NONE No interface defined
PUTTY PuTTY SSHD
SH8 Atlantis X.25 V8
SPX SPX/IPX modem server
TAPI Windows Telephony
VTI Cirel FPX /VTI via VTI3.DLL
WINDOWS Windows serial port access
WINSOCK All TCP/IP protocols, see also SET TCP <protocol>

Note that when the CTYPE command is used it is the script's responsibility to dis-

connect from whatever interface was previously being used, and to reconnect

using the new one, normally with the NETDISCONNECT and NETCONNECT

commands.

The CURSOR command

Syntax: CURSOR {ON|OFF|LINE|BLINK|BLOCK}

Normally the cursor is left on when a script executes. In situations where speed is

of the essence, some savings may be made by suppressing the extra overhead

required to update the cursor. The CURSOR OFF and CURSOR ON commands

allow you to do this. You may also use the CURSOR command to change the

shape of the visible cursor in the same way as in the screen setup menu.

The CXRESTORE command

Syntax: CXRESTORE

This command restores a context previously saved using the CXSAVE command;

what actually will be restored will depend upon the option used on the CXSAVE

command. See the CXSAVE command below for details.

 Commands

Gallagher & Robertson Glink: Script Reference 53

The CXSAVE command

Syntax: CXSAVE [<number>]

This command may be used to save script patterns and associated WHEN actions,

some internal settings, and additionally some or all of the normal script variables.

Normal use of this will be for utility scripts that might be called from other

scripts where it is undesirable to disturb the contents of patterns and/or variables.

If <number> is not specified then script patterns and active WHEN statements

will be saved; if <number> is specified then all script variables starting with

variable n will be saved as well. In both cases the current status of script

rounding, case sensitivity and idle timing will be saved (see SET ROUND, SET

CASE and SET IDLE). CXSAVE 1 will for example save ALL script variables,

CXSAVE 4 all variables with the exception of the first three. The context thus

saved is restored using the CXRESTORE command, where all saved data is

returned to its original status. CXSAVE 4 could be used for example in a case

where the called script might need to return three values, which could then be left

in %1, %2 and %3 without being disturbed by the subsequent CXRESTORE.

CXSAVE requires that enough free memory be available to hold the data being

saved.

The DBOX command

Syntax: see below

The DBOX command allows you to define your own Windows dialog boxes

directly from a script file, using most of the graphic controls supported by

Windows, such as check boxes, buttons, radio buttons and list boxes.

In that the DBOX command is fairly complex, the complete description of the

command has been included in a separate chapter of this manual, on page 177.

Here we will just summarize the general format of the command for reference:

DBOX X Y W H ["Caption"]

AUTOGROUP "Text" [options]

CHECKBOX X Y W H "Text" %N [options]

COMBOBOX X Y W H %N [options]

CTEXT X Y W H "Text" [options]

DEFPUSHBUTTON X Y W H "Text" number [options]

EDITTEXT X Y W H %N [options]

Commands

54 Glink: Script Reference Gallagher & Robertson

ENDGROUP

ENDHGROUP

ENDVGROUP

GROUPBOX X Y W H "Text" [options]

HGROUP X Y W H

IBUTTON X Y W H "Text" number [options]

ICON X Y W H "Text"

LISTBOX X Y W H %N [options]

LTEXT X Y W H "Text" [options]

PUSHBUTTON X Y W H "Text" number [options]

RADIOBUTTON X Y W H "Text" %N number [options]

SIZEBUTTON X Y W H "Text" DW DH [options]

RTEXT X Y W H "Text" [options]

VGROUP

ENDDBOX ["HelpFile"]

The DCHANGE command

Syntax: DCHANGE <item name> {<string>|<option>}

This command allows you to modify selected fields in the dial directory from a

script procedure. The entry to be modified must be current (i.e. it must be the one

to which you dialled most recently or one that you have positioned to using

DFIND or DREAD). The following may be used for <item name>:

APHONE The alternate number to use for this system
COMMENT The comment displayed for this entry
EXTRA The additional modem command to use when calling this

system
HOSTNAME The name of the host machine
KEYBOARD The keyboard transliteration file to use
LAYOUT The keyboard layout file to use
LOGIN The login name to use on this system
MODE The emulation mode to use (use the same names as used in the

MODE command)
PARITY The parity setting to use when calling this system (use the same

options as used in the PARITY command)
PASSWORD The password to use on this system
PHONE The phone number to use for this system
SCRIPT The name of the script file to use when calling
STRIP Whether to strip parity or not (specify YES or NO)

 Commands

Gallagher & Robertson Glink: Script Reference 55

The DDEADVISE command

Syntax: DDEADVISE <#dde> <item name>

This command is used to ask for notification of changed data on a DDE con-

nection opened with the DDEOPEN command. Notification is available for only

one item per channel; if you require more then you must open another connec-

tion. Notification is provided through the ON command; this command lets you

pass control to another routine which can then use DDEREQUEST to obtain the

actual data. For example:

ON KEY F1 GOTO DONE

DDEOPEN #1 "SERVER" "FILE1"

DDEADVISE #1 "Item1"

ON DDEADVISE #1 GOSUB GETITEM

ONLINE

:GETITEM

DDEREQUEST #1 "Item1" %1

MESSAGE ("Item1 is now " %1)

RETURN

:DONE

DDECLOSE #1

The DDECLOSE command

Syntax: DDECLOSE <#dde>

This command is used to close a DDE connection opened with the DDEOPEN

command. The command needs just one parameter, the number of the DDE con-

nection to be closed.

The DDEEXECUTE command

Syntax: DDEEXECUTE <#dde> <string>

This command is used to send a string over the specified DDE connection (which

must have been created with the DDEOPEN command). The effect that the string

to be executed (<string>) has will depend upon the DDE server to which you

are connected. The OK variable will be set in the usual way to indicate success or

failure of the command.

Commands

56 Glink: Script Reference Gallagher & Robertson

The DDENAME command

Syntax: DDENAME <name>

This command is used to change the application name used by the DDE inter-

face. More information on how this is used is available in the DDE Reference

appendix to the User's Guide.

The DDEOPEN command

Syntax: DDEOPEN <#dde> <topic name>

This command is used to connect to a DDE server, which may be either another

instance of Glink, or a completely different application. As for any other DDE

connection, you must specify an application and topic name. You must also

specify a connection number, which will be used for all other commands using

the DDE connection that is created by DDEOPEN. Nine simultaneous DDE con-

nections are allowed, numbered from 1 to 9. The OK variable may be used to test

whether or not a successful connection was made. If either the application or the

topic name is left blank then the first matching server to respond will be

connected to.

The DDEPOKE command

Syntax: DDEPOKE <#dde> <item name> <item value>

This command is used to send a data item to a DDE server (to which you first

must have connected using the DDEOPEN command). You must specify both the

name of the data item to be 'poked' and the value associated with the item.

The OK variable may be used to check whether the DDEPOKE command was

performed successfully.

 Commands

Gallagher & Robertson Glink: Script Reference 57

The DDEREQUEST command

Syntax: DDEREQUEST <#dde> <item name> <%var>

This command is used to request a data item from an open DDE connection (cre-

ated with the DDEOPEN command). <%var> is the variable that is to accept the

requested data. If the request fails for any reason, the OK variable will be set

false.

The DEBUG command

Syntax: DEBUG {ON|OFF|SEND xxx|RECEIVE xxx}

This command turns the internal debugging (log of all characters sent and/or

received) on or off (depending upon whether you use DEBUG ON or DEBUG

OFF). Note that the DEBUG file is rewritten each time it is used, so you must save

the results on another file (with REN, for example) before turning on the debug

option for a second time. The debug information will be written to the file

GLINK.$DB on the current directory (you may change this using the SET

DBGFILE command), and is a raw dump of data in both directions. A change of

direction on the communications line is marked in the debug file with a double

vertical line character (hex BA) in the file. This character may be changed if you

wish, using the commands:

DEBUG SEND "string"

DEBUG RECEIVE "string"

in which case the specified strings will be used to delimit the data in the debug

file.

This file is the same file as is produced when you start Glink with the /DEBUG

command line parameter, and DEBUG OFF may in fact be used to turn off

debugging that was started from the command line. While debugging is in effect,

Glink will display the word 'DEBUG' at the beginning of the status line.

If you are using debug mode to document a problem that you are having with the

emulator, remember that it's a binary file. It must remain that way if it's to be of

any help to your support personnel, so be careful not to transfer the file in text

mode.

Commands

58 Glink: Script Reference Gallagher & Robertson

The DEFAULT command

Syntax: DEFAULT

This command specifies the default action to be taken inside a SWITCH or

CSWITCH construct when there are no matching CASE statements. It must be

specified after all relevant CASE statements - see the SWITCH command on page

166 for an example.

The DEFINE command

Syntax: DEFINE <number> <name>

This allows you to specify an alternate name for a given variable. Variable names

may be any length, but only the first eight characters are significant. Once

<number> has been redefined in this way then <name> may be used instead of

the number; this may be used to give names either to variables or to patterns. For

example:

DEFINE 1 "Count"

...

ASSIGN %Count 1

IF (%Count gtn 10) GOTO DONE

...

Here we have given a name to variable %1, which may be referenced as %Count

in this particular script. Note that this is only visible to this particular script - if it

should call another script then the same DEFINE must be present if the same

name is to be used. The actual variable is still %1 and is still available as such,

both in the called and in the calling script.

The DELAY command

Syntax: DELAY <seconds>

This command simply waits the specified number of seconds. Waiting for five

seconds would look like this:

DELAY 5

 Commands

Gallagher & Robertson Glink: Script Reference 59

If you need finer control of the delay time, you may use the DTENTHS command,

or alternatively specify a time using a single position after the decimal point.

The DELMENU command

Syntax: DELMENU <string>

This command deletes any menu items that have been added to the main menu

bar with the ADDMENU and BUILDMENU commands. The entry in the menu bar

is deleted at the same time. This command is useful for the situation where the

scripts defined in the menu bar are no longer relevant, or where a new set of

scripts is needed, for example when logging into a new host. One parameter is

required, the name of the entry you wish to delete (this either will be blank or will

be the name you used when inserting the item with BUILDMENU). For example:

DELMENU "" * delete 'user' menu bar item

DELMENU "&Mymenu" * delete Mymenu item

The DFIND command

Syntax: DFIND <string>

This command may be used to find the contents of a dial directory entry given

part of the host name (see DREAD for a way of reading the directory given the

number of the desired entry). The directory will be searched starting at the first

entry, and will return the first entry with a host name containing the string

specified (the search is case-independent). For example, if you specified "tac" as

the search string then "TAC", "Bull/TAC" and "The Tac System" would all be

considered as matching entries.

If the command is unsuccessful then the OK variable will be false. If the entry is

found, then the following internal variables will be set:

$COMMENT, $DIAL, $HOST, $LOGIN, $PASSWORD, $PHONE

Commands

60 Glink: Script Reference Gallagher & Robertson

The DIAL command

Syntax: DIAL <number> [<attempts>]

This command will dial the number configured at the corresponding position in

your dial directory. Note that if there is an attached script to this number it will

NOT be executed when the dialing is done from a script in this way. For

example, to dial entry 5 in the directory you would use:

DIAL 5

DIAL will continue dialing until a connection is made, if no other parameters are

supplied. You may restrict the number of times DIAL attempts to contact the host

machine with an optional second parameter. For example:

DIAL 17 3

will make exactly three attempts to dial entry number 17, and give up if un-

successful. You may test whether or not contact was actually established in this

case using the IF OK statement.

The DISCONNECT (modem) command

Syntax: DISCONNECT

This command tells the emulator to disconnect the communications line. This is

done by changing the status on the DTR line; if you are using a modem then

make sure that it is configured to respond properly to this. Remember to enable

the line again with CONNECT before the line is used again if the disconnection is

not to be permanent. Note also that to disconnect from a normal network

interface you should use the NETDISCONNECT command to disconnect from the

host.

 Commands

Gallagher & Robertson Glink: Script Reference 61

The DIVIDE command

Syntax: DIVIDE <%var> <number>

The DIVIDE command allows you to divide one number by another. The first

parameter must be a script variable, while the second may be a script variable or

a constant. The result of dividing the first number by the second is placed in the

script variable specified first. For example:

DIVIDE %2 7

divides the present contents of the %2 variable by 7, leaving the result in %2.

Note that the result may be stored in exponential format to keep maximum pre-

cision. If you need to print a result that may be outside the range 0.01 to 32767,

you can use the TRUNCATE command to format the number in a more suitable

way. If the division can be performed correctly then the OK variable is set true. If

not (because one of the two operands was non-numeric or because the second

number was zero) then it's set false.

The DMARK command

Syntax: DMARK {<number>|ALL|CURRENT}

This command 'marks' the specified entry in the dial directory. In the usual way,

this means that this entry will then be called when a queued dial is made, either

by using the RDIAL script command or by using the queued dial facility in the

dial directory manually. For example:

DMARK 3

marks the third entry in the dial directory. The special form DMARK ALL marks

all entries in the dial directory with a single command, while the DMARK

CURRENT form will mark the entry that you most recently have attempted to dial

into (not necessarily last contacted).

Commands

62 Glink: Script Reference Gallagher & Robertson

The DOMENU command

Syntax: DOMENU

This command executes a menu that has been defined by the MENU and MOP

commands (defined further on in this chapter). The menu is shown to the user,

and the appropriate command is executed. After the command has been executed

(unless it was a GOTO or CHAIN command) then control is returned to the

statement after the DOMENU command. Control will also be passed to the

statement after DOMENU if the user 'escapes' from the menu by pressing the Esc

key, in which case the $KEYPRESS built-in variable will contain an escape

character (^[). Under Windows the $KEYPRESS variable is also updated with

enter (^M) or escape (^[) depending on when the user exits from the menu using

the OK or the Cancel button. The DOMENU command has no parameters.

The DOS command

Syntax: DOS <command>

This will execute another Windows program (the name of the command is

somewhat misleading but is necessary for compatibility with the DOS version of

Glink -- you may prefer to use EXECUTE, which is a synonym for the DOS

command).:

DOS "MYPROGRAM.EXE"

The program you start will be started in its own window, and your script will

continue to execute in parallel with the Windows program you just started. If you

need to synchronize your script with results provided only when the other

window completes, the SET DOSWAIT command is provided to modify this

behaviour. If you wish to control how the program you start should be displayed

then the SET DOSSHOW command is available.

To use commands that are internal to COMMAND.COM under Windows you

must invoke COMMAND.COM specifically. For example, to execute the delete

command below you would use:

DOS "COMMAND.COM /C DEL MYFILE"

 Commands

Gallagher & Robertson Glink: Script Reference 63

Also, commands that use the COM extension must be specified with the

extension, for example to use the program LIST.COM the name must be

specified explicitly.

For completeness, and explanation of how the DOS command works in the DOS

version of GLINK is included here. For example, if you wanted to delete the file

'MYFILE' you would put the following into your script:

DOS "DEL MYFILE"

All normal DOS conventions like piping, etc., may be used. If you wanted to

copy MYFILE to MYFILE.BAK but did not want this to write anything on your

screen you could use:

DOS "COPY MYFILE MYFILE.BAK>NUL"

To perform operations like this with the Windows version of the program, you

must be aware of the difference between internal and external commands.

Internal Normally, DOS commands will be executed using the COMMAND

shell; this is required in order to provide support for piping and for DOS internal

commands, but has the disadvantage that not all error returns will be correctly

reported. If you are dependent upon correct return values from DOS commands,

then you should use the script command SET SPATH ON first; this tells GLINK

to search the DOS PATH for the command itself (if the command is not found

then the COMMAND shell will be called in any case). In this case you may test

the status of the DOS command executed using the IF OK statement; also the

DOS errorlevel reported by the program executed will be available in the

$ERRORLEVEL built-in variable.

The DOSN command

Syntax: DOSN <command>

This command is kept for backward compatibility and is in all ways equivalent to

the DOS command.

Commands

64 Glink: Script Reference Gallagher & Robertson

The DOWNLOAD command

Syntax: DOWNLOAD <directory name>

This command allows you to override the predefined download directory, nor-

mally to ensure that the files you collect finish up in the correct place. It is good

practice to 'save' the current download directory before you start and restore it

again when you are finished, thus:

ASSIGN %11 $DOWNLOAD

DOWNLOAD "C:\SENDHERE\"

....

DOWNLOAD %11

The DPATTERNS command

Syntax: DPATTERNS

This command resets all defined patterns (see PATTERN) to null values. These

are preset to null when the script is started but it can often be useful to reset 'old'

values before starting a new MATCH setup. Patterns that have been used in WHEN

statements are not reset by this command.

The DREAD command

Syntax: DREAD <number>

This command may be used to read the contents of a dial directory entry given its

number (see DFIND for a way of reading the directory given the host name). The

number may be supplied either as a constant or as the name of a variable contain-

ing the number of the entry. If the command is unsuccessful then the OK variable

will be false. If the entry is found, then the following internal variables will be

set:

$COMMENT, $DIAL, $HOST, $LOGIN, $PASSWORD, $PHONE

 Commands

Gallagher & Robertson Glink: Script Reference 65

The DSCREEN command

Syntax: DSCREEN

This command performs the 'dump screen' function that is available interactively

on the ALT+W key. An optional parameter specifies the name of the file to which

the dump should be directed. If it's absent, then the last file used for the screen

dump function will be used. As usual, the current screen will be appended to the

end of the file, preserving any previous contents.

The DTENTHS command

Syntax: DTENTHS <tenths>

This command simply delays for the specified interval. It is provided for those

situations where you need finer control over the interval than is provided with the

DELAY command. For example the command:

DTENTHS 15

would wait for one and a half seconds.

The DTIME command

Syntax: DTIME <hour> <minute>

This command stops execution of the script until the specified time. Two integers

must be provided, the first specifying the hour and the second the minute. You

must use a 24-hour clock when specifying the time. For example, to delay your

script until nine o'clock in the evening you would specify:

DTIME 21 00

The command provides support for applications where unattended procedures

need to be started automatically by the PC at a given time.

Note also the SET WARNINGS OFF command that should normally be used in

unattended scripts.

Commands

66 Glink: Script Reference Gallagher & Robertson

The DUNMARK command

Syntax: DUNMARK {<number>|ALL|CURRENT}

This command removes the 'mark' for the specified entry in the dial directory.

The specified entry will therefore not be called when the next queued dial is

made, either by using the RDIAL script command or by using the queued dial

facility in the dial directory manually. For example:

DUNMARK 3

removes the mark for the third entry in the dial directory. The special DUNMARK

ALL form of the command removes marks for all entries in the dial directory with

a single command. This will most often be used to clear marks preparatory to

using the DMARK command to ensure that you have marked exactly the sites

specified and no others, for example:

DUNMARK ALL

DMARK 1

DMARK 3

will result in exactly systems 1 and 3 being marked and no others, irrespective of

the initial state of the dial directory. Another format, DUNMARK CURRENT, will

unmark the most recently called system.

The DVARIABLES command

Syntax: DVARIABLES

This command resets all defined variables (not PATTERNS - see the

DPATTERNS command on page 64) to null values.

The DWHENS command

Syntax: DWHENS

This command 'deactivates' any WHEN statements that might be active at the time.

 Commands

Gallagher & Robertson Glink: Script Reference 67

The ECHO command

Syntax: ECHO {ON|OFF}

This command controls echoplex mode. When echoplex mode (ECHO ON) is in

effect characters will not be echoed locally (in most cases they will be echoed

remotely from the host machine). When echoplex mode is not in effect characters

will be echoed locally as they are typed.

The EIGHTBIT command

Syntax: EIGHTBIT {ON|OFF}

This command may be used to change the state of the 'eightbit' host switch (see

the description of this in the configuration documentation). It also may be used as

a mechanism for loading both the 7-bit and 8-bit keyboard definitions. For

example, if you want to run in 7-bit 'German' but load both the 7- and 8-bit

keyboards (because you know that the host will switch you into 8-bit mode) then

you could use the following:

EIGHTBIT ON

KEYBOARD DEF

EIGHTBIT OFF

KEYBOARD GER

The ELSE command

Syntax: ELSE

This is used inside a BEGIN-ENDIF block of statements to introduce the group

of statements to be executed if the test in the IF statement fails. See the IF com-

mand on page 92 for an example of this.

Commands

68 Glink: Script Reference Gallagher & Robertson

The EMULATE command

Syntax: EMULATE <string>

The EMULATE command is in many ways similar to the SHOW command, with

one minor technical difference. This is only interesting in situations where some

of the characters in the specified string are using different codes on the PC and

the host. Strings passed through the SHOW command are specified using the

character set in use on the PC, while strings passed through the EMULATE com-

mand use the host character set. This can be useful for example when displaying

the contents of a debug file.

The ENABLE command

Syntax: ENABLE <keyname>

A script that is waiting on an ONLINE command or because the pause key has

been pressed, (see the 'PAUSE' command) may normally be started off again by

pressing ALT+O. If you wish to move this function to another key (for example

because you would prefer to be able to start yet another script in this situation, or

simply because you want to use a different key) then this is done with the

ENABLE command. See the description of the KEYS command (page 100) for a

list of valid key names. A special format, ENABLE NONE, will disable the 'script

enabling key' altogether. Note that the ENABLE command has an effect not only

for the current script but also for all subsequent scripts until another ENABLE

command is executed.

The ENDBUILD command

Syntax: ENDBUILD

This command is used to mark the end of a group of statements introduced by the

BUILDMENU command.

 Commands

Gallagher & Robertson Glink: Script Reference 69

The ENDIF command

Syntax: ENDIF

This is used to mark the end of a group of statements that are to be executed

following an IF statement. Normally only the first statement following the IF

statement will be executed if the test succeeds, but use of a group of statements

delimited with BEGIN and ENDIF overrides this. See the IF command on page

92 for an example.

The ENDSWITCH command

Syntax: ENDSWITCH

This is used to mark the end of a SWITCH or CSWITCH construct, and marks the

place to which control will be given when a group of statements for a matching

CASE have been executed (SWITCH) or when an EXITSWITCH command is

executed (SWITCH or CSWITCH). See the documentation for the SWITCH

commands (page 166) for more information.

The ENDWHILE command

Syntax: ENDWHILE

This is used to mark the end of a block of statements introduced with the WHILE

command - see the documentation of that command for an example, page 173.

The ERASE command

Syntax: ERASE <filename>

The ERASE command allows you to erase a file (or files) without having to use

the DOS command. IF OK may be used to test whether or not the command

was successful. For example:

ERASE "TEMPFILE"

Commands

70 Glink: Script Reference Gallagher & Robertson

Wildcard characters ("?" and "*") may be used if you need to erase multiple files.

For example:

ERASE "C:*.BAK"

The ERRORGOTO command

Syntax: ERRORGOTO <label>

This specifies the name of a label which is to be given control if a RECEIVE

command should not find the string it is waiting for inside the timeout limit (see

the TIMEOUT and RECEIVE commands). For example:

ERRORGOTO NOMATCH

If this command was in your script, any time a receive timed out you would

continue processing at the label NOMATCH. Note that use of the IDLE or

ONLINE commands will reset any active ERRORGOTO, which must then be

reissued before the next receive for which it is to apply.

The EXECUTE command

Syntax: EXECUTE <command>

The EXECUTE command is a synonym for the DOS command.

The EXISTS command

Syntax: EXISTS {FILE|DIR|ANY} <filename>

The EXISTS command may be used to test for the presence of a named file or

directory on your disk. If you specify FILE then the command will only check

for the presence of files with a matching name; directories will not be included in

the check. Similarly, if you specify DIR, then only directories, not files, will be

included. If you specify ANY then both directories and files will be checked for.

You may include the wildcard characters '?' and '*' in the file name in the

command. The result of the check is returned in the OK variable.

 Commands

Gallagher & Robertson Glink: Script Reference 71

For example:

EXISTS FILE "*.MSG"

IF OK GOTO SENDMSG

If any files (but not directories) with an extension of 'MSG' are found then the

script will transfer control to the label SENDMSG.

The EXITSWITCH command

Syntax: EXITSWITCH

This is used to pass control from inside a SWITCH or CSWITCH construct to the

corresponding ENDSWITCH command. Typically, inside a CSWITCH, the

EXITSWITCH command (corresponding to 'break' in C) will be used at the end

of each CASE group. It may also be used to exit immediately to ENDSWITCH in

a group of statements inside a single CASE group. See the documentation for the

SWITCH and CSWITCH commands for more information.

The EXTRACT command

Syntax: EXTRACT <#var> <parameters> <delimiters> <n>

This command scans the parameters provided and extracts parameter number

<n> using the specified delimiters, placing the result in the given variable. More

than one delimiter may be used as the same time. For example:

ASSIGN %1 "one,,three,four,,,seven"

EXTRACT %2 %1 "," 3

This would result in the value "three" being placed in variable %2.

The FCLOSE command

Syntax: FCLOSE <#file id>

This command closes one of the nine files that may be used inside a script. Only

the file identifier need be specified. See the FOPEN command on page 75 for

more information about file handling in Glink scripts. Example:

Commands

72 Glink: Script Reference Gallagher & Robertson

FCLOSE #1

The FCODE command

Syntax: FCODE <character>

This command sets the function code for the next message to be transmitted (this

will only be relevant for synchronous interfaces). For example, if you need to

send the exact equivalent of the HDS/BDS No key (which sends the escape se-

quence <esc>!, but also sets the function code to when used on a synchronous

interface) then you would need to program this using:

FCODE "!"; TRNL "^[!"

The FILTER command

Syntax: FILTER <%var> <string>

This command allows you to remove selected characters from a string. The

contents of the specified variable are inspected and any of the characters in the

second string that are present in the first string will be removed. For example:

ASSIGN %1 "abcdefggfedcba"

FILTER %1 "ec"

will result in %1 containing "abdfggfdba". Similarly, you could remove all

occurrences of the DEL character from the %2 variable using:

FILTER %1 "^$7F"

The FILTER command is always case sensitive, irrespective of the setting of

SET CASE.

 Commands

Gallagher & Robertson Glink: Script Reference 73

The FIND command

Syntax: FIND <row> <column> <string>

The FIND command searches for the specified string in the current screen,

starting at the position indicated by the row and column parameters. The state of

case checking (see SET CASE) is taken into account. A string that wraps across

rows will not produce a match. If the string is found then its row and column

coordinates will be returned in the built in $FNDY and $FNDX variables

respectively. If the string is not found then both variables will be set to zero. An

example of its usage is shown below, where we have a VT100 screen and wish to

highlight all occurrences of a particular word.

Define 1 SaveX * Variable definitions

Define 2 SaveY

Define 3 Name

Set Case ON * Case sensitive

Assign %SaveY $Y * Save current position

Assign %SaveX $X

Assign %Name "Smith" * String to search for

Find 1 1 %Name * Find it

While ($FNDY gtn 0) * While we have one

 Pos $FNDY $FNDX * Go to display position

 Show ("^[[7m" %Name "^[[0m"]] * Show in inverse

 Find $FNDY $FNDX+1 %Name * Find next occurrence

EndWhile

Pos %SaveY %SaveX * Reset screen position

Return

Commands

74 Glink: Script Reference Gallagher & Robertson

The FIX command

Syntax: FIX <%var>

The FIX command allows you to take a string (usually received directly from the

line) and convert any embedded control characters into the '^' notation other-

wise used for these in the script language. This can be useful when preparing a

script in direct interaction with a host. For example, if the variable %8 contained

the value 'ABC' followed by a carriage return and line feed, then the FIX com-

mand:

FIX %8

would change the contents of variable %8 into 'ABC^M^J'.

The FLOC command

Syntax: FLOC <#file id> <%var>

This command may be used when you are processing a file using the FRDLINE

or FWTLINE commands. It returns the current line number in the file in the

specified variable. If you have used any other commands than FRDLINE or

FWTLINE on the file then the position is undefined. You may test whether a

valid position was returned using the IF OK test. The line number returned is

that of the record that is about to be read or written, in other words you will

receive a value of one for a file that has just been opened.

The FLUSH command

Syntax: FLUSH

This command 'empties' any characters that may have been received from the line

without displaying them on the screen.

 Commands

Gallagher & Robertson Glink: Script Reference 75

The FNDEXEC command

Syntax: FNDEXEC <%var> <filename>

This command provides the full path to the executable that is associated with the

file filename. For example if you specified mydocument.doc as the file

name then the path to Microsoft Word would be placed in the specified variable.

The FNEXT command

Syntax: FNEXT

The FNEXT command (in combination with the FSEARCH command) can be

used to extract a list of matching file names from a directory using wildcard

specifications. FNEXT takes no parameters; it simply continues the search that

was specified in the preceding FSEARCH command. If a new matching file is

found, then the OK variable is set 'true' and the name of the file returned in the

internal $FILE variable. Otherwise, the OK variable will be set 'false'. See the

FSEARCH command on page 78 for an example.

The FOPEN command

Syntax: FOPEN <#file id> <mode> <filename>

Glink allows you to process up to nine files with your scripts. Files may either be

read or written, and are associated with a file identifier with the FOPEN com-

mand. Files may be read with the FRDBLOCK, FRDCHAR and FRDLINE com-

mands, and end of file testing done with the IF EOF n statement. Files may be

written using the FWTBLOCK and FWTLINE statements. When you are finished

with a file, it should be closed with the FCLOSE statement. <#file id> is a

number from 1 to 9 that the other commands will use to identify the file.

<mode> is one of INPUT, OUTPUT, APPEND, IO or EXCLUSIVE depending

upon how the file is to be used.

Commands

76 Glink: Script Reference Gallagher & Robertson

<filename> is any valid filename. The EXCLUSIVE option specifies that

although the file will only be used for input, exclusive access is needed in a

networked or multitasking environment. If you need more specific sharing modes

for FOPEN you can set these with the SET SHARE script command. The

INPUT, IO and EXCLUSIVE open modes require that the file should already

exist and will cause an error if it does not (use the EXIST command to check if

necessary).

You may also use the conventional filename *CLP to access the clipboard

contents as a file, where input operations will read data from the clipboard and

output operations will set the clipboard contents.

You may also access communications ports using the FOPEN command. In this

case the file name is specified as "*COMn:" where n is the number of the port.

This will open the port with the current settings for that port, but you may also

specify additional settings in the standard format used by the command shell

MODE command:

COMn: [BAUD=b] [PARITY=p] [DATA=d] [STOP=s]

[to=on|off] [xon=on|off] [odsr=on|off]

[octs=on|off] [dtr=on|off|hs] [rts=on|off|hs|tg]

[idsr=on|off]

For example you could use:

FOPEN #2 IO "*COM2: baud=19200 parity=N data=8"

If the FOPEN command fails then the OK variable will be set false, and in the

special case of failure of FOPEN on the communications port an error message

will also be available in the $DRESULT script variable.

As an example of how file commands may be used, the following small script

takes the contents of the file "DUMP" and shows it on the screen, where "DUMP"

may have any valid terminal commands embedded inside it:

FOPEN #1 INPUT "DUMP" * Open the file for input

IF NOT OK GOTO ERROR * Make sure it's OK

CLEAR * Clear the screen

WHILE NOT EOF #1 * Keep going until done

 FRDBLOCK #1 %1 * Read a piece of the file

 SHOW %1 * Put it on the screen

ENDWHILE

FCLOSE #1 * Close the file

 Commands

Gallagher & Robertson Glink: Script Reference 77

The FPOS command

Syntax: FPOS <#file id> <line number>

This command may be used to position to a given line in a text file (the first line

in the file is counted as line one). Note that the current line number in the file is

available in the $FPOS(#n) built-in variable. For absolute positioning inside a

file, see the FSEEK command on page 78.

The FRDBLOCK command

Syntax: FRDBLOCK <#file id> <%var>

This command reads up to 250 characters from the specified file and places them

in a script variable.

The FRDCHAR command

Syntax: FRDCHAR <#file id> <%var>

This command reads a single character from the specified file and places it in a

script variable.

The FRDLINE command

Syntax: FRDLINE <#file id> <%var>

This command reads a line of data (delimited by CR, LF, CR-LF, or LF-CR)

from the specified file into a script variable. If the line contains more than 255

characters, it will be truncated.

Commands

78 Glink: Script Reference Gallagher & Robertson

The FSEARCH command

Syntax: FSEARCH {FILE|DIR|ANY} <filespec>

The FSEARCH command (in combination with the FNEXT command) can be

used to extract a list of matching file names from a directory using wildcard

specifications. The <filespec> parameter, which may use the normal '*' and

'?' wildcard specifiers, specifies the name to match against. If a match is found,

the OK variable will be set 'true', otherwise it will be set false. The search can be

continued using the FNEXT command. In the case where a match is found, the

internal $FILE variable will contain the name of the matching file. An example

should make this clearer:

FSEARCH FILE "*.TXT"

WHILE OK

 MESSAGE $FILE

 FNEXT

ENDWHILE

This example simply lists all files in the current directory with an extension of

'TXT'.

The FSEEK command

Syntax: FSEEK <#file id> <location>

This command may be used to move to an absolute location in a file (the first

byte in the file is counted as byte zero). Note that the current location in the file is

available in the $FSEEK(#n) built-in variable. For line-oriented positioning in

text files, see the FPOS command on page 77. If you specify the location

numerically you will be limited to a maximum position of 32767, for higher

values use an intermediate variable, for example:

ASSIGN %1 262144

FSEEK #1 %1

 Commands

Gallagher & Robertson Glink: Script Reference 79

The FSIZE command

Syntax: <%var> <filename>

This command returns the length of the named file (in bytes). If the file does not

exist or for some other reason is not accessible, this command will return a length

of zero bytes. For example, to check whether the file MYFILE in the current

directory on the C: drive will fit into the floppy mounted in the A: drive before

copying it, you could do the following:

FSIZE %1 "MYFILE"

CD "A:"

ASSIGN %2 $FREE

CD "C:"

IF (%1 GTN %2) GOTO ERROR

COPY "MYFILE" "A:"

The FSKIP command

Syntax: FSKIP <#file id> <number>

This command skips over <number> lines of data (delimited by any of CR, LF,

CR-LF or LF-CR) on the specified file, and may be used for faster positioning

inside the file.

The FTP command

Syntax: FTP {COMMAND|EDIT|GET|OPEN|PUT|VIEW} filenames

This command controls FTP-related procedures using the GlinkFTP client. You

should set relevant options for the transfer using the SET FTP script verbs

before executing the actual FTP command. "filenames" uses the same format as

do the GETFILE and PUTFILE script commands, where in the case where both

local and remote names are needed you must specify them both with a semicolon

between, i.e. "local_name;remote_name". The various options available are:

COMMAND Executes the specified command on the remote FTP system. The

syntax for the command is FTP server dependent.

Commands

80 Glink: Script Reference Gallagher & Robertson

EDIT Transfers the file to the PC for editing. When editing is complete

the file will be transferred back to the host (if changed). The

program used for editing is a configurable option in the

GlinkFTP client.

GET Transfers the file from the host to the PC.

OPEN Transfers the file to the PC and executes the associated

application (for example, if the file is a Word document then it

will be opened in word).

PUT Transfers the file from the PC to the host.

VIEW Transfers the file from the host to the PC for viewing. The

program used for viewing is a configurable option in the

GlinkFTP client.

Note that by default the script will wait for the FTP procedure to complete before

proceeding. You can change this using the SET FTP NOWAIT command. If

you do this you can check on current progress using the $FTPSTATUS and

$FTPRESULT built-in variables. If the transfer fails then an error message will

also be available in the $FTPERROR variable.

 SET FTP ASCII

 SET FTP HOST "MYGCOS8"

 SET FTP NOWAIT

 FTP GET "TESTFILE.TXT;TESTFILE"

 ... other processing

 IF ($FTP EQN 0) GOTO CHECKFTP

 ... other processing

:CHECKFTP

 MESSAGE ("FTP finished with code " $FTPRESULT)

 IF ($FTPRESULT NEN 0) MESSAGE ("Err:" $FTPERROR)

The FVERSION command

Syntax: FVERSION <%var> <filename>

This command provides you with the software version number of the program

residing in the file filename.

 Commands

Gallagher & Robertson Glink: Script Reference 81

The FWTBLOCK command

Syntax: FWTBLOCK <#file id> <string>

This command allows you to write a block of data to the specified output file. No

CR-LF delimiters are appended to the data; they are written exactly as they are

stored in the script variable.

The FWTLINE command

Syntax: FWTLINE <#file id> <string>

This command is exactly the same as FWTBLOCK, except that a CR-LF delimiter

is included at the end of the data.

The GETDATE command

Syntax: GETDATE <%var> <format string>

The GETDATE command allows you to use today's date in a variety of ways. The

<format string> tells Glink in exactly which format you would like the

date to be delivered. Inside the format string, you use any of the following:

YYYY year

YY last two figures of year

MMM month in text format

MM month as two digits

M month as one or two digits

DD day as two digits

D day as one or two digits

WWW day of week, text

OOO ordinal day of year

J Julian date

Any other characters in the format string will be reproduced as they appear there.

Some examples of format strings and the resulting output for March 13th, 1989:

YYMMDD 890313

WWW D. MMM, YYYY Mon 13. Mar, 1989

Commands

82 Glink: Script Reference Gallagher & Robertson

D/M-YY 13/3-89

The GETENV command

Syntax: GETENV <%var> <string>

This command may be used to collect the value of a environment variable (if

defined). For example, to collect the name of the currently specified command

shell into variable %5 you could use:

 GETENV %5 "COMSPEC"

The GETFILE command

Syntax: GETFILE <protocol> <filename>

This command starts a file transfer from the host to the PC. Two parameters are

required, first the type of transfer to start, and secondly, the name of the file to

transfer. Note that in the case of FTP transfers you should use the FTP script

command.

Valid keywords for the file transfer protocol are:

ASCII ASCII capture

DPROT Use default protocol

FTRA FTRA (GCOS7/GCOS8 Kermit) transfer

GMODEM Ymodem-G transfer

IND$FILE IBM 3270 IND$FILE transfer

KERMIT Kermit transfer (see BINARY ON/OFF)

KSERVE Kermit transfer when other side is server

MOD7 Modem7 transfer

TELINK Telink transfer

XMODEM Xmodem transfer

YMODEM Ymodem transfer

YBATCH Ymodem-batch transfer

ZMODEM Zmodem transfer

For example, to download the file 'MYFILE.ARC' using Xmodem you would

use the command:

 Commands

Gallagher & Robertson Glink: Script Reference 83

GETFILE XMODEM "MYFILE.ARC"

For the Kermit protocol only, the file name may be specified in the format

"PC-name;Host-name", in which case the name used for the host machine

may be different from the name used locally on the PC.

Remember also that when starting a file transfer from a script you must ensure

that the host side of the transfer has been initiated before executing the

GETFILE or PUTFILE script command. For example, to transfer a file

'TESTFILE' on a GCOS8 host to 'TESTFILE.TXT' on your PC, you

might code:

TRNLINE "FTRAN PC7800"

GETFILE FTRAN "TESTFILE.TXT;TESTFILE"

in your script. The situation for IND$FILE transfers is somewhat more complex

in that you must ensure that the command you send 'comes from' the correct field

in the form. A fairly consistent way of doing this is to simulate entry of cursor

home, cursor back tab, clear field, entry of the command, and transmit.

Remembering that the host file name is already specified in the command sent to

the host so that you only need to specify the PC file name in the GETFILE

command, this could result in (for example):

SHOW "^[H^[[Z^[K"

SHOW "IND$FILE GET AAX5PRD.ACCNT(J9307) ASCII CRLF"

SHOW "^i"

GETFILE IND$FILE "J9307.TXT"

In the above, "^[H" is the home function, "^[[Z" is the back tab function,

"^[K" is the field clear function, and "^i" is the transmit function. The actual

format of the IND$FILE command you will need to send will vary from host to

host; a complete description of these will be found in the chapter describing file

transfers.

The GETKEY command

Syntax: GETKEY <string>

Commands

84 Glink: Script Reference Gallagher & Robertson

This command waits for one of a specified set of keys to be pressed before

continuing. Only keys in the supplied list will be accepted at this point, and the

actual key pressed will be available for the script in the built-in $KEYPRESS

variable. The supplied parameter may be either a variable or a constant string

containing any alphanumeric characters. The comparison with the key pressed is

case-independent.

For example:

GETKEY "ABC"

SWITCH $KEYPRESS

 CASE "A"; MESSAGE "A was pressed"

 CASE "B"; MESSAGE "B was pressed"

 CASE "C"; MESSAGE "C was pressed"

ENDSWITCH

The GETLENGTH command

Syntax: GETLENGTH <%var> <string>

This command allows you to collect the length of a variable into another script

variable. <string> is the entity whose length is to be collected (may be a

string, variable, built-in variable, etc.).

The GETMACRO command

Syntax: GETMACRO <%var> <N>

This command allows you to collect the value of the specified macro number N

into a script variable.

The GETTIME command

Syntax: GETTIME <%var> <format string>

In the same way as the GETDATE command lets you collect today's date, the

GETTIME command allows you to place the time of day into a script variable.

<format string> tells Glink how you would like the time to be formatted.

 Commands

Gallagher & Robertson Glink: Script Reference 85

The following strings are interpreted:

C tick counter (18.2 ticks per second, since midnight)

HH hours as two digits (24-hour clock)

H hours as one or two digits (24-hour clock)

UU hours as two digits (12-hour clock)

U hours as one or two digits (12-hour clock)

MM minutes as two digits

M minutes as one or two digits

SS seconds as two digits

S seconds as one or two digits

FF hundredths (Fractions) of seconds as two digits

F hundredths (Fractions) of seconds as one or two digits

AP replaced by 'am' or 'pm' depending on time

Some examples of possible input formats and their results for a time of 12:05 in

the afternoon:

HHMMSS 120500

U.MM AP 12.05 pm

HH:MM 12:05

C 791980

Two additional modifiers may be supplied in the formatting string. The first of

these, the exclamation mark (!), is used to tell Glink that the specified variable

already contains a time, which MUST have been collected as a 'tick counter'

using the 'c' format. The output in this case will not be the current time of day,

but the elapsed time since the original counter was collected. The format for this

second GETTIME may be any of the available formats, however. For example:

GETTIME %1 "c" * starts a timer

 *(perform some script commands)

GETTIME %1 "!mm:ss.ff" * collects elapsed time

MESSAGE ("Elapsed time = " %1)

The second available modifier is the percent sign (%), which tells Glink that the

call timer (elapsed time since last login) is to be used rather than the time of day.

For example:

DISCONNECT

GETTIME %1 "%hh:mm"

MESSAGE ("Time spent online = " %1)

Commands

86 Glink: Script Reference Gallagher & Robertson

The GETVALUE command

Syntax: GETVALUE <%var> <string>

The GETVALUE command provides you with a way of converting binary data

into an integer string. Often this will be needed because you've read binary data

direct from a file and need to have it available in integer format.

If <string> is less than four characters long, then the entire contents will be

converted into a number. If it contains four or more then only the first 4 charac-

ters will be converted. The conversion assumes that the least significant byte

occurs first in the string.

For example, assume that you need to use the value corresponding with

hexadecimal 0xFE43 in your script. Although there is no direct provision for

entering hexadecimal numbers, you could use the following:

ASSIGN %1 "^$43^$FE"

GETVALUE %1 %1

Note the order in which the actual contents of the string were entered here.

The GETWORD command

Syntax: GETWORD [MAIN | SCROLLBACK] <row> <column>

The GETWORD command provides you with an easy way of collecting a word

from the screen or scrollback buffer. The row and column coordinates entered

may specify any position in the word, and all relevant data about the word found

will be returned as follows:

$WDL Length of word

$WDX1 Column for first character of word

$WDX2 Column for last character of word

$WDY1 Row for first character of word

$WDY2 Row for last character of word

$WORD Contents of actual word

 Commands

Gallagher & Robertson Glink: Script Reference 87

By default, words are considered to be delimited by spaces, but you can specify

additional characters that should be considered as delimiters by setting them in

the screen options configuration or by using the SET DELIMITERS script

command. Wrapping will be done between screen lines (hence the need for

returning row values both for the start and end of the word). If the specified

screen position contains a delimiter then only that single delimiter will be

returned. As for other script commands, you may read the status line by using a

zero as the row number for the main screen, and lines in the scrollback buffer are

numbered from zero for the most recent line and upwards. Negative numbers may

also be specified as parameters when reading the scrollback and these will be

interpreted as referring to the equivalent area of the main screen (in which case

the returned parameters in $WDY1 and $WDY2 will also be negative).

For example, if you wish to collect the word at the current cursor position, mark

it, and copy it to the clipboard, you could do:

GETWORD MAIN $Y $X

SET MARKMODE NEW
SET MRECT OFF

MARK $WDX1 $WDY1 $WDX2 $WDY2

PERFORM COPY

Another example - let's assume that you want to provide a function that adds a

new entry to the right hand mouse button menu using CONTEXT. The new

function is to collect that word without marking it and put it back into the current

screen at the current cursor position. You can do all of this by executing the

following command (all on one line):

CONTEXT MAIN ADD "=GETWORD MAIN $CY $CX; SHOW

$WORD" "Collect Word"

The GOSUB command

Syntax: GOSUB <label>

The GOSUB command behaves like the Basic command of the same name.

Processing will continue at the specified label rather than continue inline, but

Glink will remember the position of the GOSUB command. The label may be any-

where within the script file, either before or after the GOSUB command (but it

may not be in another script file). When the subroutine that was invoked with

GOSUB has finished whatever it is doing, it performs a RETURN and processing

continues at the statement after the GOSUB. For example:

Commands

88 Glink: Script Reference Gallagher & Robertson

 GOSUB R1

 SEND "2"

 ...

:R1

 SEND "1"

 RETURN

would send first a "1" and then a "2".

The GOTO command

Syntax: GOTO <label>

The GOTO command just transfers control to the label defined with the same

name. This may be anywhere in the file, before or after the GOTO. Note that you

can't GOTO a label in another script file.

The GPARAM command

Syntax: GPARAM <string>

The GPARAM command sets the value of the global parameter. This parameter

exists even while scripts are not running and can therefore be used to save infor-

mation between two different scripts that will execute at different times. It may

also be used to set information externally that will apply to all scripts that may

run subsequently. The value set using GPARAM can be retrieved from the internal

variable $GPARAM (which returns the entire string) or using one of the $Gn

parameters which treat the value as a sequence of fields with space separators.

For example, if one script set the global parameter using:

GPARAM "F1 F2 F3 F4"

a script executing later would be able to refer to $GPARAM (in which case the

value "F1 F2 F3 F4" would be returned) or to $G3 (which would return the

value "F3").

 Commands

Gallagher & Robertson Glink: Script Reference 89

The GPROFILE command

Syntax: GPROFILE <%var> <filename> <section> <item>

This command allows you to read options from INI files that are formatted in the

same way as for example the SYSTEM.INI file, with sections introduced using

headings in the format

[section-name]

The command returns the value of the selected option in the <%var> variable.

For example, if the [boot.description] section of your SYSTEM.INI

file contains the following line:

codepage=850

then executing the following script command:

GPROFILE %1 "C:\WINDOWS\SYSTEM.INI"

 "boot.description" "codepage"

would place "850" in script variable number 1. If the specified item does not

exist then the contents of the script variable will remain unchanged, so normally

this should be initialized with the default value of the option you are collecting.

The GWCONNECT command

Syntax: GWCONNECT <ip-address> <hostname>

The GWCONNECT command is used in connection with the gatewayed interfaces,

and will connect to the specified host. Its primary use is in connection with Ggate

gateways. In this case it takes two parameters, first the symbolic or numeric IP

address of the host on which the gateway is running, and second the defined

name of the host which the gateway should provide a connection to.

For example, if you have a host defined as DPS8 and your gateway software is

running on the machine with IP address 192.150.211.7, then you would use:

GWCONNECT "192.150.211.7" "DPS8"

Commands

90 Glink: Script Reference Gallagher & Robertson

If you already are configured with the correct gateway IP address then you may

specify this with a null string, and the current value will be used. For example:

GWCONNECT "" "DPS7"

Note that if you wish to set the IP address or host name without actually

connecting to the host then the SET SERVER and SET RESOURCE

commands may be used for this purpose. Also, if you wish to use the defined

profile for a particular host but override one or more of the host parameters then

you may do this by including the relevant parameters after the host name. For

example:

GWCONNECT "" "DPS8 -DN PH02"

If you are using one of the DNTD gateways, you may optionally specify the name

of the gateway PC as the first parameter, and specify the installation ID for the

DPS6000 machine as the second. For example:

GWCONNECT "" "DPS6-1"

would connect to the machine named DPS6-1 both on the NetBIOS and the SPX

gateways using the default gateway machine, while

GWCONNECT "192.150.211.35" "DPS6-2"

would do the same for the TCP/IP variant of the DNTD gateway (in this case the

IP address of the gateway machine is obligatory).

The GWCONNECT command can also be used to connect to a TNVIP gateway.

In this case, the first parameter is the host address, and the second address is the

TNVIP resource name:

GWCONNECT "192.150.211.35" "ISP4"

In this case, you may also set the terminal type required for the host connection

using the SET TTYPE command.

 Commands

Gallagher & Robertson Glink: Script Reference 91

The HALT command

Syntax: HALT

This command simply stops the emulator. If the configuration has been changed

then the emulator will not ask for confirmation that the new configuration should

be saved. If you need to save changes made by your script then use the CONFIG

SAVE script command first. No operator intervention should be required when

the HALT command is used. If a termination script ($$TERM.SCR) is present it

will be executed (unless the command is present in the termination script itself).

The HOST command

Syntax: HOST <string>

This command allows you to insert your own text in the space normally reserved

for the host name in the status line. The text will only appear if the configuration

option for show host name has been selected. For example:

HOST "Login complete"

For special purposes you may use a URL in the host name field. If you do this

then a message will be displayed when the mouse passes over the field and the

field will be clickable (when clicked the URL will be opened using the defult

browser).

The ICON command

Syntax: ICON <icon file> <icon number>

This command lets you define the default icon that Glink will display when mini-

mized. <icon file> is the name of the file containing the icon, and <icon

number> is the number of the icon inside the file. If you have no tools that let

you investigate the contents of icon files then trial and error will also work. For

example, to get a generic comms icon from the MORICONS.DLL file delivered

with Windows you can use:

ICON "C:\WINDOWS\SYSTEM32\MORICONS.DLL" 67

Commands

92 Glink: Script Reference Gallagher & Robertson

If you wish to load an icon from an icon file (with an extension of .ICO) then

use zero as the icon number in that the file contains only a single icon.

The IDLE command

Syntax: IDLE <seconds>

This command tells the emulator that it should wait until the host has been 'idle'

for the specified number of seconds before continuing ('idle' in the sense that the

host no longer sends any data). The time may be specified with a resolution of

0.1 seconds. The normal use for this would be in a situation where the host is

sending a stream of data, but is not providing any constant string at the end of the

data stream that allows you to find out when the transmission is finished. For

example:

SNDLINE "STATUS" * ask for some host data

GETF ASCII "LOGFILE" * turn on logging

IDLE 2.5 * wait until 2.5 secs idle

CAPTURE OFF * turn off logging

Note that the IDLE command will reset the target of any active ERRORGOTO or

ON TIMEOUT statements, which must therefore be reissued before any new

RECEIVE statements are used if the target is still to be active.

The IF command

Syntax: IF [NOT] <condition> <script command>

This is used for various testing purposes. In all of them the same rule applies - if

the test is true then the following command will be executed; otherwise it will

not. The first use of the IF statement is to check whether a match was found on

one of the patterns you have defined with a PATTERN command. If the pattern

was matched then the command in the IF statement will be executed; otherwise

processing will continue from the statement in the following line. For example:

PATTERN !1 "You have mail"

RECEIVE "RDY:"

IF !1 GOTO CHECKMAIL

 Commands

Gallagher & Robertson Glink: Script Reference 93

In this case, if the string "You have mail" is received at some point prior to

the "RDY:" text then control will be passed to the CHECKMAIL label. The

syntax 'IF NOT !n' is also valid and has the meaning you would expect.

The next form of the IF command may be used to check on the status of a

preceding file transfer (GETFILE/PUTFILE command) or dial (DIAL/

RDIAL) command:

IF [NOT] OK <command>

This form may also be used after a CMPNUM to check whether both variables had

numeric values, and after a SCAN command to check whether or not the second

string was contained in the first.

A related test is:

IF FAIL <command>

This test is a specific test provided for those using the RDIAL command and is

explained there.

Testing for a keypress from the user may also be done with:

IF KEYPRESS <command>

Note that the IF KEYPRESS statement does not actually 'read' the key involved,

so you may use the test several times in succession, to skip out of a set of

embedded subroutines for example. The key will still be 'pressed' and the script

will react in whatever way it would otherwise have done. To check for a keypress

and at the same time 'dispose' of the key, use WKEY as soon as possible after the

IF KEYPRESS test.

Another format is available in connection with the file handling commands, and

may be used to test whether EOF has been reached on an input file. The syntax

for this one is:

IF [NOT] EOF <#file id> <command>

where <#file id> is the file identifier for the file in question (see the FOPEN

command for more information).

Yet another format is used to check upon the results of CMPNUM and COMPARE

operations:

Commands

94 Glink: Script Reference Gallagher & Robertson

IF [NOT] {EQ|NE|LE|LT|GE|GT} <command>

Here only one of the comparison tests is used, where the symbols have the

following meanings:

EQ The variables are equal

NE The variables are not equal

LE The first variable is less than or equal to the second

LT The first variable is less than the second

GE The first variable is greater than or equal to the second

GT The first variable is greater than the second

Such comparisons need not be coded as separate COMPARE and IF statements;

you may include the two strings or numbers to be compared in parentheses

directly after the IF command. For example:

IF (%1 EQ "A") GOTO FOUND

To distinguish between normal comparisons and numeric comparisons

(COMPAREs and CMPNUMs) an extra set of operators is provided:

EQN, NEN, LEN, LTN, GEN, GTN

which have the same meanings as the equivalent operators without the additional

'N'; these force a numeric compare, while the normal set of operators will pro-

vide a normal string comparison. Also, note that the use of one of these con-

structs in an IF statement will leave the result of a comparison available for

further testing in the same way as COMPARE and CMPNUM. This means that

something like:

IF (%1 EQN 10) GOTO EQUALS

IF LTN GOTO LESSTHAN

is legal. The comparison need not be done again, in other words.

If you are using the 'direct' comms interface, and a modem which is set up to

reflect the 'true' status of the carrier signal, then you may also use the following

format of the IF command to check whether you are still logged into the host:

IF OFFLINE GOTO LOGGEDOFF

 Commands

Gallagher & Robertson Glink: Script Reference 95

The IF OFFLINE test may also be used on LAN interfaces, in which case it

will test whether or not you actually are connected to a host machine. An equi-

valent IF ONLINE statement is also available.

If you have been waiting for a string to arrive from the host (for example with a

RECEIVE command) then you may test whether or not a timeout occurred using:

IF TIMEOUT GOTO ERROR

The TIMEOUT status is set true whenever a timeout occurs, and set false when-

ever a new statement that might incur a timeout is executed.

The script language provides a SET STATUS command (see the SET command)

allowing you to set an internal flag. This flag may be tested later in a script using

IF TRUE and/or IF FALSE.

Normally an IF statement will execute the single command following the IF

statement, independently of how things are formatted on the line. A common

error is therefore to write something like:

IF (%1 EQ %2) ASSIGN %5 "Y"; GOTO P1 * WRONG!

In this case, the GOTO will be performed irrespective of the result of the test

comparing %1 and %2. The only script statement affected by the comparison is

the ASSIGN statement immediately following the IF. In the case where you need

to do this kind of thing, the extended IF syntax may be used:

IF [NOT] <condition>

BEGIN

 (statements)

ELSE

 (statements)]

ENDIF

This allows you to execute a group of statements as the result of a single test, and

optionally, to execute another group of statements if the test fails. For example:

IF ($KEYPRESS EQ "1")

BEGIN

 ASSIGN %1 "One"

 MOPTION 1

ELSE

 ASSIGN %1 "Invalid"

 MOPTION 2

Commands

96 Glink: Script Reference Gallagher & Robertson

ENDIF

Further IF statements may be nested inside such groups of statements up to a

maximum of 50 levels.

The INCLUDE command

Syntax: INCLUDE <filename>

The INCLUDE command allows you to collect source from another file that will

be inserted into the script in place of the command. This can be useful when you

for example have a list of common DEFINE statements that you wish to share

between a suite of scripts. Note the difference between INCLUDE and CALL:

whereas the INCLUDE command copies in the source code directly and thus

produces a single script, the CALL command starts a totally different free-

standing script when the first script is executed. The INCLUDE command should

be followed by the name of the script file to be included, for example:

INCLUDE "\SCRIPTS\DEFINES.SCR"

The code copied from the included file is processed exactly as though it had

replaced the INCLUDE file. You may nest INCLUDE statements to any depth,

limited only by available memory.

The INFILE command

Syntax: INFILE <%var> <string> [<max length>]

The INFILE command is exactly the same as the INPUT command except for

one thing. In the case of INFILE the user will be allowed to press F10 in order

to extract a file name from the file display. This is done in the same way as for

file name entry other places in the emulator (in the Windows versions of the emu-

lator an additional button will be added to the dialog box for the same purpose).

For example:

INFILE %3 "File to send: "

For more details, see the INPUT command below.

 Commands

Gallagher & Robertson Glink: Script Reference 97

The INPC command

Syntax: INPC <%var> <string> [<max length>]

This command is exactly the same as the INPUT command, with the exception

that the cursor is placed at the END of any predefined input in the editing win-

dow. This can be used for values that you do not expect the user to have to over-

ride, or where it's natural for the user to add to the predefined input rather than

overwrite it.

The INPUT command

Syntax: INPUT <%var> <string> [<max length>]

This command collects input from the keyboard and assigns it to the specified

variable. You must specify both the number of the variable to which the input is

to be assigned and a 'prompt' which should tell you what kind of input is expec-

ted. For example, to collect the name of a file later to be downloaded you could

use the command:

INPUT %1 "Please enter your name: "

to assign the user's input to variable number 1. You may precede the INPUT

command with an MPOS command to control the position of the input window on

the screen. An optional additional parameter may be used to specify the maxi-

mum length of the input to be read, for example:

INPUT %2 "Name (max 6 characters): " 6

You may preinitialize the value to be used in the window simply by assigning a

value to it before using the INPUT routine. In the same way, if you do not want

anything to appear as a default then you should ASSIGN a value of "" before

calling the INPUT routine. The cursor will be placed at the start of any such

input value, so that if the user starts typing immediately then the old input will

disappear (but see the INPC command).

Commands

98 Glink: Script Reference Gallagher & Robertson

If the user 'aborts' the input routine (by pressing ESC, or in Windows by pressing

the Cancel button) then a null string is returned in the specified variable. The

$KEYPRESS built-in variable will also contain either a CR (^M) or escape (^[)

character depending on the way the user exited. This still applies under

Windows, even if the user actually exited using the mouse.

The title shown on the top line of the menu window may be set using the MENU

command. If no title is required, and you have been using menus, precede the

INPUT command with a MENU "", as you will otherwise 'inherit' the title of the

previous menu.

The INPUT commands may be used inside a menu definition, in which case the

syntax is slightly different - the prompt field is then not specified in that the MOP

or MOPC command being used will already have provided this. In this case, the

maximum length for input is a required parameter. For example, you could

specify:

MOP "File name: " INFILE %1 32

in which case space will be set aside inside the menu for the 32 character input

field. Additionally, in that INFILE was used in this example, the F10 key to list

the current directory (and possibly select a file name) will be available while

positioned inside this field.

The INVISIBLE command

Syntax: INVISIBLE <%var> <string> [<max length>]

This command is the same as the INPUT command in all respects but one; the

characters typed by the user do not appear on the screen but instead appear as

asterisks or question marks. This is especially useful for collecting passwords.

For example:

INVISIBLE %3 "Please enter password: " 12

 Commands

Gallagher & Robertson Glink: Script Reference 99

The ISOCONNECT command

Syntax: ISOCONNECT <connect parameters>

This command is specific for the Nixdorf/NFS and NCR/OSI communications

interfaces, and will start the procedure required to connect to the specified host.

The command accepts one parameter, which consists of a number of fields sepa-

rated by commas (,) or semicolons (;). The parameters are specified in the

following order:

• Front End

• Local TSAP

• Remote TSAP

• Local SSAP

• Remote SSAP

• Terminal ID

• Password

The user will be presented with the normal connect menu, filled out with those

parameters that were specified in the ISOCONNECT command. The cursor will

be positioned in the first blank field. For example, using

ISOCONNECT "DN100,TM01,,X1,TSS"

will present a menu with the fields for Front End, Local TSAP, Local SSAP and

remote SSAP filled out, with the cursor placed in the Remote TSAP field.

The ISSERVICE command

Syntax: ISSERVICE

If you have set Glink up to run as a service, for example to run background

scripts independently of a user being logged on, then you should include the

ISSERVICE command at the start of your scripts. This will tell Glink to display

any message boxes that may be produced in a way that is compatible with

services and which otherwise would not be displayed on the screen.

Commands

100 Glink: Script Reference Gallagher & Robertson

The KEYBOARD command

Syntax: KEYBOARD <keyfile>

This command allows you to change to another keyboard definition. The

keyboard is loaded into the 7-bit or 8-bit keyboard definition depending on the

mode that currently is set. The ‘.glinkxlit’ extension should not be included; for

example to load the PC character set you would use:

KEYBOARD "KPC"

You can use the OK variable to test whether loading the keyboard definition was

successful.

The KEYKERMIT command

Syntax: KEYKERMIT <keyfileid>

This command sets the keyboard translation file to be used for Kermit text

transfers. Note that if you use any of the options that specify transfers for the

OEM character set in the Windows versions then that translation will be per-

formed in addition to the translation specified here. If no translation is specified

for Kermit transfers, either with this command or with the setup option, then the

current 8-bit keyboard will be used.

The KEYS command

Syntax: KEYS <keyname> [<keyname> [...]]

The KEYS command allows you to simulate the action of any keys on the

keyboard while in a script. The KEYS command takes a variable number of

parameters, one for each key you need to emulate, with spaces between each

keystroke. Normal keys use just their keytop names, and the prefixes ALT-,

ALTGR-, SHIFT- and CTRL- may be used to specify the relevant shift keys (for

example SHIFT-F3 or ALT-M). These prefixes may in turn be prefixed with L or

R if you wish to refer to the left or right version of the key specifically where this

is relevant, for example LALT-Q. Note that if an asterisk (*) is used in this

command, then it should be enclosed in quotes or it will be treated as the start of

a comment.

 Commands

Gallagher & Robertson Glink: Script Reference 101

Glink recognizes in addition the following names:

BS backspace

CENT center keypad on enhanced keyboard

CR carriage return

DEL the DEL key

DOWN down arrow

END the END key
ENT ENTER

ESC the ESC key

F1-F12 function keys, combine with ALT/SHIFT/CTRL as needed

GR* Num * on numeric keypad

GR+ Num + on numeric keypad

GR- Num - on numeric keypad

GR/ Num / on numeric keypad

HOME the Home key

INS the Ins key

LEFT left arrow

LF Line feed

MLDBL double click on left mouse button (see note)

MLEFT left mouse button

MLUP left mouse button up

MMDBL double click on middle mouse button (see note)

MMIDDLE middle mouse button down

MMOVE mouse move

MMUP middle mouse button up

MRDBL double click on right mouse button (see note)

MRIGHT right mouse button

MRUP right mouse button up

MWHEEL mouse wheel rotation, rotation value returned in $MWHEEL

PGDN the PGDN key

PGUP the PGUP key

PRT the PRINT SCREEN key

RIGHT right arrow

SP space

TAB the TAB key

UP up arrow

Commands

102 Glink: Script Reference Gallagher & Robertson

In the case where a key has two separate versions on the keyboard, for example

the Page Down key which can be found both on the extended function pad and on

the numeric keypad, then the KEYS command will refer to the basic version of

the key (in this case the version on the numeric keypad). If you have a specific

need for the extended version of the key then prefix the standard name with the

letter X. For example:

 KEYS XPGUP

Keys for which this applies are DEL, DOWN, END, ENT, HOME, INS, LEFT,

PGDN, PGUP, RIGHT and UP.

Note that the 'mouse' keys above are designed for use with the ON script com-

mand and are included in this table for the sake of completeness. Note that when

the mouse is trapped using one of these commands this disables normal mouse

usage. The user can however still perform normal mouse actions by holding

down the CTRL key at the same time as using the mouse. Note also that you may

only trap double clicks if you have also trapped the equivalent single click.

For example, if you wanted to duplicate the actions of a user tabbing to the third

field of a form, entering 123, and pressing transmit, you could use the following

script command:

KEYS Home Tab Tab 1 2 3 Gr+

Note the spaces between each of the letters and numbers in these commands -

each argument to the KEYS command must be a 'keypress'; strings are not

accepted here.

Note that the KEYS command may only be used to pass data to the emulator

window, not to dialog boxes or other Windows programs.

Beware of using the KEYS command to enter simulated keys as a result of an ON

KEY command, especially if the typeahead queue has been enabled. The key-

strokes may well not be entered in the order you expect. If you can use the SHOW

command to perform the result of the keystroke by passing an escape sequence to

the emulator you will usually find that to be more reliable.

 Commands

Gallagher & Robertson Glink: Script Reference 103

The LABEL command

Syntax: LABEL <label>

This defines a place in the script that you can get to using a GOSUB or a GOTO

command. Names of labels may be any length, but Glink will only check the first

8 characters. You may not have more than 250 labels in a single script file.

Labels may be specified either by using LABEL written in 'longhand' or by using

a colon (:) in the first non-blank position, in other words:

LABEL GOHERE

:GOHERE

mean just the same thing.

The LAYOUT command

Syntax: LAYOUT <layout name>

This command allows you to switch to another keyboard definition. The name

you specify is used wth the extension '.glinklayout' to specify the name of the

keyboard layout file you are using (for example, LAYOUT "L01" would tell

Glink to load the keyboard layout from L01.glinklayout). A LAYOUT

command with no parameters tells Glink to load the default keyboard layout

(DEF.glinklayout if it exists; otherwise the default layout provided with the

emulator).

You can use the OK variable to test whether loading the keyboard layout was

successful.

The LCASE command

Syntax: LCASE <%var>

This command can be used to convert a variable into lower case (small letters). It

just needs one parameter, the variable to be converted, for example:

LCASE %1

Commands

104 Glink: Script Reference Gallagher & Robertson

Note that for the conversion of 'high ASCII' characters to be performed correctly

then you must have defined your country code and codepage correctly, or some

characters may not be interpreted.

The LINE command

Syntax: LINE <string>

The LINE command takes the string provided and provides it to the emulator

exactly as if the string had been received from the host machine.

The LOCAL command

Syntax: LOCAL {ON|OFF}

The LOCAL ON/OFF command turns local mode on and off. Note that while

LOCAL mode is effective, all data from the line will be ignored.

The LOG command

Syntax: LOG {ON|OFF|TOGGLE}

This command controls print logging mode. If print logging is enabled then data

coming from the line will be sent in parallel to the configured printer (control

sequences will be stripped).

The MANDIAL command

Syntax: MANDIAL <string>

This command allows you to dial a number using the dial directory functionality

but avoiding the necessity of including an entry in the dial directory with the

appropriate number in that the number is specified in the command. For example:

MANDIAL "22419764"

 Commands

Gallagher & Robertson Glink: Script Reference 105

would call the number 22419764. If you would like to use the alternate number

functionality of the dial directory a second number may be supplied separated

from the first with a '/' character. In the same way, if an additional modem

command is needed this may be specified after a second '/' character. For

example, the command

MANDIAL "22410403//ATS95=2"

would dial 22410403 after sending the additional modem command ATS95=2.

All the normal dial directory functions apply, in particular dial codes and

abbreviations.

The MARK command

Syntax: MARK X1 Y1 X2 Y2

This command is used to set up a mark in the current screen. X1 and Y1 are

the column and row coordinates of the start of the mark, while X2 and Y2 are

the column and row coordinates of the end of the mark. The type of mark

depends on whether rectangular marking has been set or not (either using the Edit

menu or using the SET MRECT command).

In older versions of the program, the calculation of the mark position was not

consistent with the values returned by the $MXn and $MYn built-in variables. In

practice you therefore had to use a value for X2 one greater than you would

expect (also one greater for Y2 if rectangular marking was set). This is still the

case, for reasons of compatibility, but if you would prefer to be able to use

consistent values then we have provided the SET MARKMODE command. For

example:

SET MARKMODE NEW

MARK 1 1 3 1

will set a mark covering the first three columns of line one, irrespective of

whether rectangular marking is being used.

Commands

106 Glink: Script Reference Gallagher & Robertson

The MATCH command

Syntax: MATCH

This is used after you have set up some patterns with the PATTERN command.

MATCH tells Glink to watch what the host is sending, and to wait until one of the

specified patterns turns up. At this point processing will continue. You can use

the IF command to find out which of the patterns was found. For example:

PATTERN !1 "CONNECT"

PATTERN !2 "BUSY"

PATTERN !3 "NO CARRIER"

PATTERN !4 "VOICE"

SNDLINE "ATDT123456"

MATCH

IF !1 GOTO CONNECTED

etc...

The MATCH command is by default case sensitive, but this may be changed using

SET CASE OFF.

If a SET IDLE command is active then Glink will wait for the line to be idle for

the specified time before continuing to execute the script (this may be found

necessary on half-duplex lines).

The MBAR command

Syntax: MBAR <menu> <item id> {ENABLE|DISABLE|LOCK}

The MBAR command allows you to disable (and enable) specific options in the

Glink for Windows menu bars. <menu> in the above specifies which menu you

are referring to and is one of:

MAIN The menu bar in the main emulator window

SCROLLBACK The menu bar in the scrollback window

FILE The menu bar in the file display

DIAL The menu bar in the dial directory

SYSTEM The system menu

 Commands

Gallagher & Robertson Glink: Script Reference 107

The identifier <item id> specifies the item using a positional notation (this is

to avoid problems with national language versions of the software). Each entry in

the top level of the menu is numbered starting from 1. The same applies to popup

menus attached to these, and in this case a '/' separator is used to indicate the

extra level. In popup menus with horizontal separation bars, the bar should be

counted as an extra position. For example, to disable the 'Settings' option

(the third entry in the main menu bar) you would use:

MBAR MAIN 3 DISABLE

On the other hand, if you only wished to disable the selection of a different com-

munications interface (the second option in the second item of the 'Settings'

menu item) then you would use:

MBAR MAIN 3/2/2 DISABLE

The 'LOCK' option provides an additional level of security - once an option has

been locked then subsequent attempts to enable the option will fail. For example

if you wished to disable the two items for script procedures and script commands

you would use:

MBAR MAIN 1/10 LOCK

MBAR MAIN 1/11 LOCK

Note that two horizontal separator bars have been counted in these commands. If

you are disabling items in the main 'Help' menu item then additional menu items

that may have been added with the BUILDMENU command will not be counted,

in other words the Help item is always item 6. If you wish to access such

additional menu items you may do so, with item numbers of 7 and up; for

example, the second additional menu item would be accessed with an item

number of 8.

The MCURSOR command

Syntax: MCURSOR <cursor name>

This command allows you to select any of the standard Windows cursor shapes

for the main emulation window. The following are supported for <cursor

name>:

ARROW Standard arrow cursor

Commands

108 Glink: Script Reference Gallagher & Robertson

CROSS Crosshair cursor

HAND Hand cursor

IBEAM Text I-beam cursor (default)

ICON Empty icon

NESW Double-pointed cursor with arrows pointing northeast and

southwest

NS Double-pointed cursor with arrows pointing north and south

NWSE Double-pointed cursor with arrows pointing northwest and

southeast

SIZE Square with a smaller square inside its lower-right corner

UPARROW Vertical arrow cursor

WAIT Hourglass cursor

WE Double-pointed cursor with arrows pointing west and east

The MD command

Syntax: MD <directory name>

The MD command allows you to create a new working directory without having to

use the DOS command. IF OK may be used to test whether or not the directory

was created successfully. For example:

MD "\TEMP"

The MDIAL command

Syntax: MDIAL <string>

This command lets you set (or remove) the modem dial command. It uses one

parameter, the dial command you wish to set. For example:

MDIAL "ATDT"

This command can be especially useful when setting up a configuration that must

function both on network interfaces (where you would often wish to remove the

dial command in order to allow the dial directory to function as a selection

mechanism for network addresses) and also directly to a modem using a different

dial directory. Removing the dial command can be done quite simply with the

command

 Commands

Gallagher & Robertson Glink: Script Reference 109

MDIAL ""

The MENU command

Syntax: MENU <title>

The MENU command defines the start of a user-defined menu, which may be used

to present the user with a set of alternative actions. A user-defined menu must

always start with a MENU command, followed by a number of MOP or MOPC com-

mands (defining the different options to choose between), or MTEXT commands

which just present text, and finally by a DOMENU command, that actually presents

the user with the resulting menus. Optionally, the MPOS command may be used

to predefine where on the screen the menu is to appear. If you are using the

Windows versions of Glink, you may also use the MFONT command to select the

font in which the menu will be displayed.

A typical sequence for defining a menu could be:

MPOS 3 3

MENU "Please choose one of:"

MOPC "A" "Log into system A" GOTO P1

MOPC "B" "Log into system B" GOTO P2

MOPC "C" "Log into system C" GOTO P3

DOMENU

The menu will be shown to the user at the time the DOMENU command is

executed. At this point the user may position on one of the options with the arrow

keys and press ENTER to select that option; the associated command will be

executed and control will pass to the statement after DOMENU. Alternatively, if

ESC is pressed, control will pass directly to the statement after DOMENU without

executing any of the commands defined with MOP and/or MOPC.

Menus are always left on the screen as long as possible. This will in general be

until you start using the actual emulation functions again (SHOW, MESSAGE) or

receive data from the host (RECEIVE, MATCH, RCVLINE, etc). This allows you

to 'tile' menus on top of each other and also to leave a menu on the screen while

some lengthy process is being performed by the script. Up to 8 menu windows

may be displayed simultaneously, with the limitation that the total area occupied

by these eight menus must not exceed two full screens of data. Extra control of

such tiling for the expert user is provided with the UNMENU, REMENU, and

NOMENU commands.

Commands

110 Glink: Script Reference Gallagher & Robertson

The MENU command is also used to set titles for input windows generated by the

INPUT, INFILE, INPC, and INVISIBLE commands.

The MESSAGE command

Syntax: MESSAGE <string>

The MESSAGE command will display the string specified on the terminal, follow-

ed by a CRLF sequence. The string will not be sent to the host.

The MFONT command

Syntax: MFONT <fontname> <pointsize>

The MFONT command defines a font to use when displaying script menus. Note

that current versions of Windows do not allow you to choose italic or light fonts,

in that the internal procedures select an upright bold font if one is available. For

example, if you choose Arial Italic and Arial Bold is available then Arial Bold

will be displayed. The selection of a specific font is not only useful for aesthetic

reasons, but may also be useful when you are preparing a menu where you need

to align items exactly and can use a non-proportional font to do so.

Note that font selected remains active for all subsequent menus, not only in the

script selected, but also in scripts executed later in the same Glink session. If

your script does not want to affect the execution of other scripts then it should

reset the font when finished with it. Some examples:

MFONT "Courier New" 12

MFONT "Arial" 17

MFONT "" 0 * selects the default font

 Commands

Gallagher & Robertson Glink: Script Reference 111

The MINIT command

Syntax: MINIT <string>

This command allows you to set the modem initialization string. It's provided

mainly for usage by the first-time user script, but may be useful in a situation

where more than one modem is being addressed by the same copy of the emu-

lator. Note that the initialization string is only sent to the modem when the

emulator starts up, unless the option in modem setup for reinitialization before

each outgoing call is set. For example:

MINIT "AT&F&C1&D2S0=0"

The MODE command

Syntax: MODE <emulation mode>

This command switches the emulator between the different emulation modes.

Valid forms of the identifiers for <emulation mode> are:

VIP

V77

7107

7102

3270

5250

3151

ANSI

VT220
PRESTEL (or VIEWDATA)

MINITEL (or TELETEL)

Commands

112 Glink: Script Reference Gallagher & Robertson

The MOK command

Syntax: MOK

 When you define a menu containing only MTEXT commands, the normal action

for a script is to continue execution (leaving the menu displayed where this is

possible). Often however you simply want to display a text of some kind and

want the execution of the script to be delayed until the user has confirmed that

this should happen. The MOK command is designed to provide this functionality.

An 'OK' button will be added to the menu, and further execution delayed until the

button is pressed.

The MONO command

Syntax: MONO {ON|OFF}

The MONO command acts in the same way as the command line /M switch. In

other words, it tells the program to use only black and white on the screen

(whether or not there apparently is a color screen attached).

The MOP command

Syntax: MOP <string> <script command>

The MOP command defines an option in a user menu. It should always be pre-

ceded by a MENU command and followed later in the script by a DOMENU com-

mand, which actually starts execution of the menu. <string> is the text to

present in the menu, and <script command> is the command to execute if

the option is selected by the user. The maximum number of different options you

may select 22. Given that the maximum length of a single text is 76 characters,

this enables you to provide a menu that may be anything up to a complete screen

(not including the status line).

 Commands

Gallagher & Robertson Glink: Script Reference 113

The MOPC command

Syntax: MOPC <character> <string> <script command>

The MOPC command defines an option in a user menu. In addition to providing

exactly the same functions as the MOP command, you define an additional alpha-

numeric character. This character may be used to choose this option directly from

the menu, rather than have to position the cursor to the option first. If the defined

character occurs in the menu text (as a capital letter) then that letter will be

presented in high-intensity. See the MENU command on page 109 for an example.

Normally, if a key is pressed that is not defined in a MOPC command for the

current menu, then no action will be taken. If you wish to provide a 'default' exit

in the menu to cover other possible keys typed by the user, then the special

format:

MOPC "" "string" <command>

may be used. The command specified here will be executed whenever a character

not specified in one of the other MOPC statements for the current menu is typed

(the actual character typed will be available in the $KEYPRESS built-in

variable).

The MOPTION command

Syntax: MOPTION <position>

Normally the first option in a script menu will be where the cursor is placed when

the menu is presented to the user. MOPTION allows you to override this and

place the cursor on one of the other available options. Used together with the

$MOPTION internal variable this may also be used as a 'place saver' for a menu

that has been removed from the screen but should be presented again at a later

time.

Commands

114 Glink: Script Reference Gallagher & Robertson

The MOVEWINDOW command

Syntax: MOVEWINDOW <X> <Y> <DX> <DY>

The MOVEWINDOW command allows you to move and/or resize the emulator

window. X and Y are the new coordinates for the top left hand corner of the win-

dow, while DX and DY are the new width and height of the window. All values

are in pixels. Note that the current values for all of these are available in the

internal variables $WX, $WY, $WDX and $WDY. If you wish to move the window

without resizing you can therefore use a command like this:

MOVEWINDOW %NewX %NewY $WDX $WDY

Resizing the window without moving would be done with much the same type of

command:

MOVEWINDOW $WX $WY %NewDX %NewDY

The MPOS command

Syntax: MPOS <row> <column>

Normally menus are presented centered on the screen, but you may change this

using the MPOS command. If the menu cannot be presented in the position you

require then it will be presented centered instead. This applies both vertically and

horizontally, and this fact may be used if what you in fact intend to do is present

a menu on a given row but centered horizontally, for example (in which case you

can just specify 79 as the column position).

The MPOS command may also be used to control the position of the INPUT,

INFILE, INPC or INVISIBLE user input windows. It must always be used

immediately before the command that presents the menu or input box (for

example, you must repeat the MPOS if you use a REMENU command).

 Commands

Gallagher & Robertson Glink: Script Reference 115

The MSGBOX command

Syntax: MSGBOX {CAPTION|HIDE|POS|SHOW|TEXT} ...

The MSGBOX command allows you to display a small message box, typically to

keep the user informed of work in progress. The box will remain on display until

it's either hidden using the MSGBOX HIDE command or until the script

terminates. It will be centered on the screen by default but this may be overridden

using the MSGBOX POS X Y command, where X and Y are specified as pixel

coordinates. Normally you will set the caption and text for the message box,

show it on-screen, possibly change the text once or twice and then finally hide it

when you are finished:

MSGBOX Caption "TP8 TEST"

MSGBOX Text "Connecting to host..."

MSGBOX Show

NETCONNECT

MSGBOX Text "Connected, setting up the session..."

ON TIMEOUT 10 GOTO FAILED

SET IDLE 0.2

SNDLINE ""

CONVERSE "$$ 4800 MODEL: " "VIP7804"

CONVERSE "$%$" "CN TP"

MSGBOX Text "Logging into TP..."

CONVERSE "LOGICAL ID--" "AA01"

CONVERSE "***HELLO***" "LOGON"

MSGBOX Hide

The MTEXT command

Syntax: MTEXT <string>

Lines on menus that have corresponding actions are presented with the MOP and

MOPC commands. Lines that should just contain text but are not options that may

be selected to perform a particular action may be presented with the MTEXT com-

mand. The line occupies a space on the menu but will not be 'selectable' with the

arrow keys. You may in fact choose to build a menu that contains no MOP or

MOPC instructions at all, in which case the menu will be put onto the screen, but

the script will continue executing immediately. This may be used to present a text

'in a box' in a simple and easy way (note also that you can use MOK to make the

script wait at this point if this is your intention). For example:

Commands

116 Glink: Script Reference Gallagher & Robertson

MENU " File Error "

 MTEXT "Could not access the specified file!"

 MTEXT "Press enter to continue"

 MOK

DOMENU

The MULTIPLY command

Syntax: MULTIPLY <%var> <number>

The MULTIPLY command allows you to compute the product of two numbers.

The first parameter must be a script variable, while the second may be a script

variable or a constant. The result of multiplying the two numbers is placed in the

script variable specified first. For example:

MULTIPLY %11 %12

multiplies the present contents of the %11 variable by the present contents of the

%12 variable, leaving the result in %11. Note that the result may be stored in

exponential format to keep maximum precision. If you need to print a result that

may be outside the range 0.01 to 32767, you can use the TRUNCATE command

to format the number in a more suitable way. If the multiplication can be

performed correctly then the OK variable is set true. If not (because one of the

two operands was non-numeric) then it's set false.

The MVSCROLL command

Syntax: MVSCROLL <X> <Y> <DX> <DY>

The MVSCROLL command allows you to move and/or resize the scrollback win-

dow. X and Y are the new coordinates for the top left hand corner of the window,

while DX and DY are the new width and height of the window. All values are in

pixels. Note that the current values for all of these are available in the internal

variables $SWX, $SWY, $SWDX and $SWDY. If you wish to move the window

without resizing you can therefore use a command like this:

MVSCROLL %NewX %NewY $SWDX $SWDY

Resizing the window without moving would be done with much the same type of

command:

 Commands

Gallagher & Robertson Glink: Script Reference 117

MVSCROLL $SWX $SWY %NewDX %NewDY

Note that the actual size of the window may be adjusted slightly to accommodate

a whole number of columns and/or rows of screen data.

The NAME command

Syntax: NAME <string>

This command allows you to insert a name in the status line in the space normally

used for the user name (see the /N startup option). Example:

NAME "Joe"

For special purposes you may use a URL in the user name field. If you do this

then a message will be displayed when the mouse passes over the field and the

field will be clickable (when clicked the URL will be opened using the defult

browser).

The NETCONNECT command

Syntax: NETCONNECT <host name>

This command is provided for those using network interfaces, and allows you to

make a connect using a specified server name. It uses one parameter, the 'server

name' to connect to. For example, on the Atlantis X.25 interface, you could

establish a connection to the X.25 address 031069 using the following command:

NETCONNECT "031069"

The NETCONNECT command may also be used with a null parameter in the case

where you simply want to reconnect to the server to which you were most

recently connected. You may check whether the connection was successful using

the IF ONLINE script command.

Commands

118 Glink: Script Reference Gallagher & Robertson

The NETDISCONNECT command

Syntax: NETDISCONNECT

This command is provided for those using network interfaces, and disconnects

you from the host into which you are currently logged.

The NEW command

Syntax: NEW <scriptname>[!label]

This command also allows you to give control to another script file in the same

way as the CHAIN command, but unlike the CHAIN the new script will execute

at top level, so that a RETURN command will just terminate rather than give

control to an upper level script. For example:

 NEW "SCRIPT4.SCR"

The whole pathname must be provided (except the SCRGL extension, which is

optional). Note that all of the normal conventions for starting a script apply. A

special use of the NEW command is to ensure that the script is executing at top

level (and will not see interference from code in a calling script):

 IF ($LEVEL gtn 1) NEW $SCRIPT

The NOMENU command

Syntax: NOMENU

The NOMENU command removes all active menus from the screen immediately.

Normally when you are using menus, the system will keep the current menu on

the screen until it must be removed (see explanation under 'MENU'). If you wish

to remove it immediately, either because you wish to execute another menu or

remove the menu(s) as a signal to the user, then the NOMENU command will do

this for you.

 Commands

Gallagher & Robertson Glink: Script Reference 119

The OBJECT command

Syntax: OBJECT <filename>

Including an OBJECT command in a script tells Glink that the script is not to be

executed, but just compiled, and saved on the specified file. This file can then be

used as a script in just the same way as a normal script. There are several reasons

for wanting to do this; firstly, the generated file is smaller and is saved 'ready to

go'. In the case of large scripts this can save valuable time. Secondly, the compile

process 'garbles' the output (including any text that may be included there). This

fact can be used to either make sure that the script is not modified by another

user, or to protect the contents of the file from inspection to discover login

sequences and the like.

Note that scripts saved in compiled format will usually have to be recompiled for

new releases of the Glink software. This is because the format used to save the

compiled script will not necessarily be compatible between one release and the

next. A warning message will be issued if an attempt is made to execute an

incompatible compiled script.

The OEM command

Syntax: OEM

This command specifies that the current script is using the native PC character set

rather than the Windows (ANSI) character set. Scripts using 'high-ASCII' charac-

ters that were prepared using a non-Windows editor should include this command

(which takes no parameters) to be compatible with the Windows editors.

Commands

120 Glink: Script Reference Gallagher & Robertson

The OLE command

Syntax:

OLE Create ObjectName "Class.Name"
OLE Connect ObjectName "Class.Name"
OLE Get [<%var>|ObjectName] ObjectName.PropertyName
OLE Set ObjectName.PropertyName <value>
OLE Call ObjectName.MethodName [parameters]
OLE Calr [<%var>|ObjectName] ObjectName.MethodName

[parameters]
OLE Free ObjectName

OLE ERRORS {NORMAL | FATAL | NONFATAL}

This command provides the functionality you need if you wish to use OLE

automation from your script. To use the above commands you will first have to

establish a connection with the OLE object you wish to control, using either the

CREATE or CONNECT command. In both cases, you will specify a name that

you choose yourself for the object, which you will use in the other OLE

commands. If the command fails then the script OK variable will be set false

and a descriptive error text will be made available in the $OLERESULT

variable.

While controlling the object you may use GET to access properties that are

exposed by the automation server, SET to modify them, and CALL or CALR

to use its methods (use CALR when the method returns a value that you need).

If the call actually returns another object then you should specify a symbolic

name rather than the name of a script variable.

When you specify parameters for the methods you are using, you may prefix

them with N=name to specify a named parameter, and also T=x to specify that

you wish the following parameter to be delivered as an integer (this is required

for some of the earlier OLE automation servers). The type 'x' can be S for a

string, I for an integer or B for a boolean. In general Glink will inspect the values

being delivered and attempt to deliver them in an appropriate format unless you

format them specifically with the 'T=' syntax.

You may free the object when you are done with it using OLE FREE; the object

will in any case be freed when the script terminates.

 Commands

Gallagher & Robertson Glink: Script Reference 121

You can control rutime error handling using the OLE ERRORS command.

Normal is to terminate the script with an error message except for CREATE and

CONNECT which will set the OK variable and $OLEERROR/$OLERESULT

variables. FATAL tells Glink to terminate on any OLE error, NONFATAL to not

terminate, setting OK, $OLEERROR and OLERESULT.

The subject of OLE in general is too wide to be dealt with in any detail here, and

the specifics are obviously specific to the actual automation server you are

accessing, but we can take a look at the sort of things you can do by providing

some examples:

This example opens Word, reads in a document and copies the entire document

to the clipboard. It then starts a file transfer to a GCOS8 host to transfer the

contents to a text file doc1 on the host machine:

Ole Create Word "Word.Application"

Ole Call Word.Documents.Open "C:\MYDOCS\DOC1.DOC"

Ole Call Word.ActiveDocument.Range.Copy

Ole Call Word.ActiveDocument.Close 0

Ole Call Word.Quit

Ole Free Word

Binary OFF

Set Transfer ANSI

SndLine "GKRM F"

PutFile FTRAN "*CLP;doc1"

This next example assumes that we are logged into a host that is displaying some

tabular data (the contents of the table will of course affect the statements we use

to format the table). The data is marked, copied to the clipboard, pasted into an

instance of Word, converted to a table with some simple formatting applied, and

saved as table.doc:

Set Mrect ON

Set Ctabs ON

Mark 8 5 72 22

Perform Copy

Ole Create W "Word.Application"

Ole Set W.Visible 1

Ole Call W.Documents.Add

Ole Call W.ActiveDocument.Range.Paste

Ole Call W.ActiveDocument.Range.Select

Ole Call W.Selection.ConvertToTable ^I

Ole Call W.Selection.HomeKey 6

Ole Call W.Selection.Cells.Delete 3

Commands

122 Glink: Script Reference Gallagher & Robertson

Ole Call W.Selection.SelectColumn

Ole Set W.Selection.ParagraphFormat.Alignment 2

Ole Call W.Selection.MoveRight 12 4

Ole Call W.Selection.SelectColumn

Ole Set W.Selection.ParagraphFormat.Alignment 2

Ole Call W.ActiveDocument.SaveAs "TABLE.DOC"

Ole Call W.ActiveDocument.Close 0

Ole Call W.Quit

Ole Free W

You will find a working example of the OLE script command in the

Scripts\Demo\Ole.Sub example in your Glink installation.

The ON command

Syntax: See below

The ON command has two main uses; firstly as a way of enabling specific actions

that are to be taken for certain keys while the script is running, and secondly to

give more advanced possibilities than ERRORGOTO when handling timeouts.

To enable a key, use the ON command like this:

ON KEY <keyname> <another command>

You will find a list of valid keynames documented under the KEYS script com-

mand. <another command> can be any valid script command. You could for

example write:

ON KEY F1 GOSUB RF1

and let the RF1 subroutine do whatever processing you wish. Note that the keys

that are 'reprogrammed' by ON KEY are only 'active' when the script itself is

waiting for input; i.e. you are executing a RECEIVE, MATCH, ONLINE or similar

command. Up to 40 different keys may be defined with ON KEY. Mouse button

presses as well as keypresses may be intercepted in this way, for example:

ON KEY MLEFT GOSUB MENU1

specifies that whenever the user presses and releases the left-hand mouse button,

the MENU1 subroutine will be executed. To react to ANY keypress from the user,

you can use:

 Commands

Gallagher & Robertson Glink: Script Reference 123

ON KEYPRESS <another command>

Note that when you use this syntax the ON event is 'reset' and that you should

reissue the ON KEYPRESS to trap subsequent keypresses.

Beware of using the KEYS command to enter simulated keys as a result of an ON

KEY command, especially if the typeahead queue has been enabled. The key-

strokes may well not be entered in the order you expect. If you can use the SHOW

command to perform the result of the keystroke by passing an escape sequence to

the emulator you will usually find that more reliable.

The ON command also provides more advanced possibilities than the

ERRORGOTO command for handling timeouts, as noted above. The simplest

usage of this type is:

ON TIMEOUT <seconds> <another command>

<Another command> can be any valid script command, and n is the maxi-

mum number of seconds the script should wait. The equivalent function to an

ERRORGOTO would thus be ON TIMEOUT n GOTO ... However, if you have

other requirements for error handling you can use this statement to provide them.

For example:

ON TIMEOUT 10 SNDLINE ""

would send a CR message if the required string were not found within 10

seconds. If you have an active ON TIMEOUT command you may use the

TIMEOUT command to change the actual timeout period without changing the

associated action. Note that use of the IDLE or ONLINE commands will reset

any active ON TIMEOUT command, which therefore must be reissued if it is to

remain active after use of either of these commands.

The next usage for the ON command is to test for 'activity':

ON INACTIVITY 300 GOTO LOGOUT

This says that if there has been no activity of any kind, either from the line or

from the keyboard, within the specified time, then the specified statement should

be executed.

Another use:

ON SESSION 3600 GOTO WARNING

Commands

124 Glink: Script Reference Gallagher & Robertson

Each time you log into a new machine, a 'session' timer is started. The specified

statement is executed when the timer expires.

To check for a disconnection, the ON command looks like this:

ON OFFLINE GOTO LOGGEDOFF

On most comms interfaces, the ON ONLINE and ON OFFLINE statement means

that the rest of the ON statement will be executed if the program should detect a

connection or disconnection with the host. On direct or modem connections,

these are triggered when the carrier signal changes. The example below shows

how a script could automatically reconnect when it gets disconnected:

:N1 ON ONLINE GOTO N2; NETCONNECT; ONLINE

:N2 ON OFFLINE GOTO N1; ONLINE

Incoming DDE advises can be checked with the following ON command:

ON DDEADVISE #1 GOSUB GETITEM

The rest of the ON statement will be executed when a DDE Advise message is

received from the DDE server program.

The ON command may also be used for prints:

ON ENDPRINT GOSUB WORDPRINT

This command will be executed whenever a local or host print terminates. This

command is useful when printing to a file. When the ENDPRINT is activated, the

print file is closed, making it accessible to your script for copying or printing via

other applications using OLE, DDE or a simple command line such as

NOTEPAD.EXE /P “myfile.prt”. The print may be terminated by the host, by a

local print screen, by the print timer or by turning the print logging off.

You can detect receiving the ‘turn’ from the host by using:

ON TURN GOSUB CHECKSCREEN

 Commands

Gallagher & Robertson Glink: Script Reference 125

When this command is used, the script will call the subroutine whenever the turn

is received from the host. The detection of the turn depends on the

communications interface being used and the emulation mode. If the emulation

mode is FORMS or TEXT or the communications interface supports the notion

of TURN (e.g. Ggate, TNVIP, TN3270, TN5250), then it will be immediate,

otherwise the turn will be triggered 500 milliseconds after the host has stopped

sending data. In both cases, the turn will only be generated if the keyboard is

unlocked.

Active ON events may be reset at any time using the script RESET command.

For example, an active ON OFFLINE statement can be cancelled using RESET

OFFLINE.

The ONLINE command

Syntax: ONLINE

The ONLINE command allows Glink to continue in interactive terminal mode yet

still retain control in the script procedure. Any WHEN statements that are active at

the time the ONLINE command is executed will still be active and perform their

defined functions. This allows you to 'monitor' the line for predefined sequences

even though the emulator is still being used for normal purposes. The script will

continue executing at the statement after the ONLINE command when the user

presses the 'enable' key. The enable key is predefined as ALT+O but this may be

changed with the ENABLE command. An example of the use of ONLINE:

 PATTERN !1 "^M^JNO CARRIER"

 WHEN !1 GOTO LOGOUT

 ONLINE

Note that the ONLINE command will reset the target of any active ERRORGOTO

and ON TIMEOUT commands, which therefore must be reissued when

appropriate.

Commands

126 Glink: Script Reference Gallagher & Robertson

The PACE command

Syntax: PACE <milliseconds>

This command will set the 'line pacing' (in milliseconds). This can be useful if

you are connecting to systems where the speed at which you can send data varies

in different parts of the system. For example:

PACE 10

The PARAM command

Syntax: PARAM <string>

This command sets the value of the 'script parameter'. Normally you will specify

parameters to scripts simply by including these in the CALL or in the command

line you use to start the script. In some cases you may wish to modify the

parameters used after the script has started, or in the case of the UVTI interface

simply use the parameter as an alternative way of delivering data to the external

procedure.

The PARITY command

Syntax: PARITY {EVEN|ODD|NONE|EVN8|ODD8}

This command will set the parity on the communications line. The following

options are supported:

EVEN 7-bits even parity

ODD 7-bits odd parity

ONE 8-bits no parity

EVN8 8-bits even parity

ODD8 8-bits odd parity

You only need to use this if you need to change the parity setting from the setting

that was active when the script was started.

 Commands

Gallagher & Robertson Glink: Script Reference 127

The PATTERN command

Syntax: PATTERN <!pattern> [<string>]

Up to twenty different 'patterns' may be set using this command, numbered from

1 to 20. Glink will look for any patterns that may be set any time you do a

MATCH (which says wait until a pattern is received) or a RECEIVE (which

specifies what to wait for, but Glink will still be looking out for the patterns you

have set). For example:

PATTERN !3 "You have mail"

To reset a pattern:

PATTERN !3

You need to be able to reset patterns because Glink will always look for any

pattern that has a defined value when you use the MATCH command. Note that

DPATTERNS will reset ALL your patterns (except for those with active WHEN

statements - to delete all patterns absolutely use DWHENS before using

DPATTERNS). Another main use of patterns is in connection with the WHEN

statement. WHENs are used to set up 'actions' that will be performed when the

pattern is recognized even though the script is performing some other action at

the time. Patterns are case sensitive by default, but this may be changed using the

SET CASE OFF command. Note that this applies when the pattern is actually

set, not at the time the comparison is actually made.

The PAUSE command

Syntax: PAUSE <keyname>

The PAUSE command allows you to specify a key which may be used

interactively to 'pause' a script (see the KEYS command for a list of valid

keynames). Normally there is no 'pause' key defined. However, as soon as one

script has defined a 'pause' key, that key will remain in effect for subsequent

scripts that may be executed. This will be the case until the key is redefined with

another PAUSE command or disabled with a PAUSE NONE command.

Commands

128 Glink: Script Reference Gallagher & Robertson

Note that if the script was waiting for a certain text at the point where it was

'paused', re-enabling the script with the ALT+O key (or the key defined with the

ENABLE command) will resume execution at the command AFTER the wait. In

other words, the wait will be 'broken'.

The PERFORM command

Syntax: PERFORM {functionname}

The PERFORM command allows you to execute any of the internal functions of

the emulator. These functions are exactly the same as those internal functions that

can be assigned to the keyboard using the keyboard configurator. Many of them

are also available through other script commands, but the complete set is

supplied here for completeness. Note that the PERFORM command is more

reliable than the KEYS command for these functions in that they are not subject

to keyboard redefinition. They are specified as follows:

ASCIITABLE ASCII table

BREAK Send break

C132 132 cols swap

CALLTIME Call timer

CAPTURE Capture data toggle

CHAT Chat mode toggle

CLEAR Local screen clear

COPY Windows copy function

DEFMACRO Inline macro

DIAL Dial a number

DUMPSCREEN Screen dump

EDTBACK Edit mode back

EDTFORWARD Edit mode forward

EDTMODE Enter edit mode

EDTRECALL Edit command recall buffer

EXEMACRO Exec inline macro

FILES Show files

HANGUP Hang up line

HELP Help menu

INFO Program info menu

INSTOGGLE Insert toggle

KILLALL Kills previous sessions (Ggate only)

KSERVE Kermit server

LINEBUFF Show line buffer

 Commands

Gallagher & Robertson Glink: Script Reference 129

LDIALOG Local dialog menu

LOCTOGGLE Toggle local mode

LOGIN Send login name

MAC-0 to

MAC-63 Keyboard macro

MHELP Top level help menu

PASSWORD Send password

PASTE Windows paste function

PRINTSCREEN Print screen

PRTVAR Print variables only

PSEND Windows paste/send function

PXMT Windows paste/transmit function

RECEIVE Receive a file

RESET Reset error

RESTART Restart comms

RULER Toggle crosshair ruler

SAVESCROLL Save in scrollback

SCRDOWN Scroll down

SCRLEFT Scroll left

SCROLLBACK Display scrollback

SCRRIGHT Scroll right

SCRUP Scroll up

SEND Send a file

SETUP Setup menu

STARTSCRIPT Start a script

SWITCH Switch session

TERMINATE Terminate emulator

TOGGLES Toggles menu

TRANSFER File transfer menu

The KILLALL function may require extra coding to wait for the Ggate host to

accept and disconnect the host sessions before you re-initiate a connection, e.g.:

SET SERVER "ggate.gar.no"

PERFORM KILLALL

:W1

 IDLE 0.1

 IF ONLINE GOTO W1

GWCONNECT "" "MYHOST"

Commands

130 Glink: Script Reference Gallagher & Robertson

The PICK command

Syntax: PICK {FILE|DIR|ANY}

This command may be used when you wish the user to select a file using the file

display menu. The file display is immediately called and the name the user

selects with the ENTER key will be returned in the $FILE built-in variable. You

may specify whether a file or directory should be selected (or either), and the

header shown in the file display will reflect which choices are valid.

If no file is selected then a blank value will be returned. For example:

PICK FILE

IF ($FILE eq "") GOTO ALLDONE

PUTFILE ASCII $FILE

The file or directory must exist in order to be PICKed.

The PLAY command

Syntax: PLAY <filename>

This command plays the named waveform file or system sound. For example, to

play the waveform file TADA.WAV supplied with Windows you would use:

PLAY "C:\WINDOWS\MEDIA\TADA.WAV"

To play the 'Exit Windows' sound you would use:

PLAY "SystemExit"

If the specified sound does not exist then it will be replaced with a normal beep.

 Commands

Gallagher & Robertson Glink: Script Reference 131

The POPUP command

Syntax: POPUP

This command removes the most recent entry from the call stack. What this

means is that the next RETURN statement executed will exit to a GOSUB one

higher in the hierarchy than otherwise would have been the case. The normal use

for this would be in a subroutine in which you wish to transfer control to a main

level error routine.

Example:

:SUB1

 ON TIMEOUT 10 GOTO SUB1ERR

 RECEIVE "Name: "

 SNDLINE $LOGIN

 RETURN

:SUB1ERR

 POPUP

 GOTO ERR

If the POPUP had not been executed here, then you would still effectively be 'in'

the subroutine, and the next RETURN executed would take you to the place where

SUB1 was called. POPUP removes the reference to SUB1 from the stack of

GOSUB references.

The PORT command

Syntax: PORT <number>

This command defines which communications port to use (if you don't use the

command, then of course Glink will just continue on whichever port was in use at

the time the script was started).

Commands

132 Glink: Script Reference Gallagher & Robertson

The POS command

Syntax: POS <row> <column>

This command simply moves the cursor to the specified position, and is useful in

cases where you wish to present a particular message in a predefined place on the

screen.

The PPROFILE command

Syntax: PPROFILE <filename> <section> <item> <value>

This command allows you to write options to INI files that are formatted in the

same way as for example the SYSTEM.INI file, with sections introduced using

headings in the format

[section-name]

The command writes the value of the selected option into the file. If necessary

the file will be created and the chosen section inserted. For example, if you

wanted the [boot.description] section of your SYSTEM.INI file to

contain the following line:

codepage=850

then executing the following script command:

PPROFILE "C:\WINDOWS\SYSTEM.INI"

 "boot.description" "codepage" "850"

would do this for you.

 Commands

Gallagher & Robertson Glink: Script Reference 133

The PREMOTE command

Syntax: PREMOTE <parameter number> <parameter value>

This command has relevance only on the Atlantis and Eicon NABIOS interfaces

for X.25 connections. It allows you to control remote PAD parameters from a

script that is handling X.25 logins (for setting of local PAD parameters, see the

PSET command below). The command sets the equivalent PAD parameter for

the terminal logging into Glink - for example, you can turn off echo at the other

end by using:

PREMOTE 2 0

The PRINT command

Syntax: PRINT <string>

The PRINT command will use the built-in printing routines to send the specified

data to the printer. For example, to send a form feed character to the printer you

would write

PRINT "^L"

The PSET command

Syntax: PSET <parameter number> <parameter value>

This command has relevance only on the Atlantis and Eicon NABIOS interfaces

for X.25 connections, and allows you to control local PAD parameters from a

script (check documentation from your PTT for more information about PAD

parameters).

Commands

134 Glink: Script Reference Gallagher & Robertson

The PUTFILE command

Syntax: PUTFILE <protocol> <filename>

The opposite of the GETFILE command, this will start a file transfer from your

machine to the host machine. For example, to send a file to the host using

KERMIT you would use:

PUTFILE KERMIT "FILENAME"

For the Kermit protocol only, the file name may be specified in the format

"PC-name;Host-name", in which case the name used for the host machine

may be different from the name used locally on the PC. Note that in the case of

FTP transfers you should use the FTP script command.

In the case of an FTP transfer, the file name must be coded with the local and

remote names. Additionally you must have set the host configuration name and/or

parameters using SET FTPSERVER so as to provide the necessary connection

information.

See the GETFILE command for a list of valid file transfer protocol keywords.

The QUIT command

Syntax: QUIT

This stops script processing and returns the emulator to interactive mode.

 Commands

Gallagher & Robertson Glink: Script Reference 135

The RATR command

Syntax: RATR <%var> <row> <column>

This command allows you to read the logical and physical attributes from a given

screen position. The result returned in the %var variable consists of a 48-

character string of ones and zeros. Each of these indicates the presence or

absence of a particular attribute. The first 16 relate to the actual appearance of

the character position on the screen, after any user-specified mappings have been

processed. The last 32 relate to attributes set by the host machine - these include

not only visual attributes but also logical attributes. Note that for simple

character-based emulations (ANSI, for example) only the first 16 positions are

valid.

For example, the following script fragment checks to see whether the character at

the current cursor position is underlined (on the screen) or not:

RATR %1 $Y $X

SUBS %1 %1 9 1

IF (%1 EQ "1") GOTO Underlined

A complete list of the various positions and their meanings follows:

Pos Type Meaning Pos Type Meaning

1 Physical Reserved 25 Logical Reserved

2 Physical Double-width line 26 Logical Reserved

3 Physical Reserved 27 Logical Digit

4 Physical Sixel graphics 28 Logical Numeric

5 Physical Double height lower 29 Logical Alphabetic

6 Physical Blink 30 Logical Right justify

7 Physical Double width 31 Logical Must fill

8 Physical Double height upper 32 Logical Must enter

9 Physical Underline 33 Logical Attribute start

10 Physical Background red 34 Logical Unprotected

11 Physical Background green 35 Logical Transmittable

12 Physical Background blue 36 Logical Modified

13 Physical Bold 37 Logical Omit print

14 Physical Foreground red 38 Logical Double width

15 Physical Foreground green 39 Logical Double height

16 Physical Foreground blue 40 Logical Reserved

17 Logical Reserved 41 Logical Underline

Commands

136 Glink: Script Reference Gallagher & Robertson

Pos Type Meaning Pos Type Meaning

18 Logical Reserved 42 Logical Inverse

19 Logical Reserved 43 Logical Hidden

20 Logical Reserved 44 Logical Blink

21 Logical Reserved 45 Logical Low intensity

22 Logical Reserved 46 Logical Foreground red

23 Logical Reserved 47 Logical Foreground green

24 Logical Reserved 48 Logical Foreground blue

The RCVLINE command

Syntax: RCVLINE <%var> <max length>

This command collects a line of data from the host into the specified script

variable. The maximum length of data to receive must also be specified. For

example:

RCVLINE %4 12

would collect a maximum of 12 characters into script variable number 4. The

receive is terminated either when the required number of characters has been

received or when a terminator is received (default terminators are ETX, EOT and

CR). Any line feed characters received are stripped, as are NULs, DELs and

ETBs in order to make it easier to receive multiple variable length strings from

the host.

For more advanced applications, you may wish to modify the way that RCVLINE

filters characters and also wish to consider characters other than the defailts to be

terminators. This is provided for by the SET RLFILTER and SET RLTERM

commands. For example, you may wish to set things up so that the ETB character

acts as a terminator rather than be filtered out. You can do this by specifying

SET RLFILTER "^$0A^$00^$7F"

and

SET RLTERM "^$0D^$03^$04^$17"

 Commands

Gallagher & Robertson Glink: Script Reference 137

before your RCVLINE command. Note that you may check which character

actually caused the receive operation to terminate by inspecting the contents of

the built-in $RLTERM variable (in the case where the receive terminates because

the specified number of characters were received this variable will be empty).

The RCVTURN command

Syntax: RCVTURN

This command waits for the emulator to receive the ‘turn’ from the host. This

only has a definitive meaning for those interfaces that support it (G&R Ggate and

DGA, TNVIP, TN3270 and the X.25/TGX interfaces). On other interfaces the

command will simply wait for a pause in the data sent from the host. This may be

used to check that the host has finished sending data, for example in order to

inspect the contents of the form that has been received.

The RD command

Syntax: RD <directory name>

The RD command allows you to delete a directory (subject to the normal rules

about deleting directories) without having to use the DOS command. IF OK may

be used to test whether or not the directory was deleted successfully. For

example:

RD "\TEMP"

The RDIAL command

Syntax: RDIAL [<max attempts>]

This command will start a 'queued' redial of all marked numbers in the dial

directory, in just the same way as pressing the NUM/+ key interactively while in

the dial directory does. As soon as a connection has been made with any of the

marked hosts, execution continues on the statement after the RDIAL command. If

no hosts have been marked then this will be reflected in the script OK variable.

You may use this fact to program a 'loop' that processes marked entries, using the

fact that the mark is removed for each site as it is contacted.

Commands

138 Glink: Script Reference Gallagher & Robertson

An optional parameter provides for termination of the redial after a given number

of unsuccessful attempts:

RDIAL 10

will either return a connection to one of the marked hosts, return immediately if

no hosts are marked, or return after 10 consecutive attempts to dial have failed.

You may distinguish between these three different cases using the IF FAIL

command. OK is set true only when a connection is established, while FAIL is set

true if the return from RDIAL is because of failure to contact a host rather than

an absence of marked host machines. The following should make this clear:

RDIAL 10

IF OK GOTO CONNECTED

IF FAIL GOTO NOCONTACT

GOTO NONEMARKED

The RECEIVE command

Syntax: RECEIVE <string>

This command specifies a string for which the script is to wait. The script will

only wait for as long as is defined in the TIMEOUT command (default is 60

seconds) and then either go to the ERRORGOTO label if one has been defined, or

the next command if not. While the script is waiting for the string to arrive,

patterns will also be checked and may be tested for afterwards with the IF

command. However, unlike MATCH, RECEIVE will not continue just because a

pattern was found - it waits until the actual string you tell it to wait for has

arrived. For example:

RECEIVE "Password:"

The RECEIVE command is by default case sensitive, but this may be changed

using the SET CASE OFF command. If a SET IDLE command is active then

Glink will wait for the line to be idle for the specified time before continuing to

execute the script (this may be found necessary on half-duplex lines). This is

obviously not a completely reliable way of knowing that the complete output has

been received.

If you are using a communications protocol that supports the concept of 'turn' i.e.

a signal that says when the mainframe has finished sending to the terminal, then

you can wait for your 'turn' by issuing:

 Commands

Gallagher & Robertson Glink: Script Reference 139

RECEIVE "^$03"

ETX (0x03) is the internal Glink signal for turn, and is delivered by Ggate, DGA,

TNVIP and TN3270, although IBM applications sometimes deliver the 'turn',

then change their mind and send more (also the 0x03 may be delivered as part of

normal transmitted data). Note that you may use the RCVTURN command when

you are not waiting for any particular string, but would like to know when the

mainframe is finished so that the script can process the data received.

The RECS command

Syntax: RECS <string>

This command is similar to the RECEIVE command, with the exception that the

characters specified need not be received together; any characters may be recei-

ved between the characters specified in the string to be received. This is especi-

ally useful when 'invisible' characters are being sent on the communications line

between the characters you can actually see on the screen. For example, if the

host is actually sending the sequence:

Enter your id please<cr><lf>?

then you could tackle this (without starting to specify control characters directly)

either by using two RECEIVE statements like this:

RECEIVE "Enter your id please"

RECEIVE "?"

or by specifying just one RECS statement like this:

RECS "Enter your id please?"

The RECS command is by default case sensitive, but this may be changed using

the SET CASE OFF command. If a SET IDLE command is active, then Glink

will wait for the line to be idle for the specified time before continuing script

execution. You may find you need this on half-duplex lines.

Commands

140 Glink: Script Reference Gallagher & Robertson

The REMENU command

Syntax: REMENU

If the action performed by some option on a menu does not actually result in

removal of the menu from the screen, then you may find yourself in the situation

that you wish to retain the current menu on the screen and let the user choose

another option from the same menu. Typically, this would be execution of a DOS

command or some kind of file processing. This is done with the REMENU com-

mand. Note that it is your own responsibility to ensure that the command is

executed while the menu in question is still on the screen, and that you do NOT

need to execute any of the MENU, MOPC, MOP, MTEXT or DOMENU commands

associated with the original menu. The system remembers all the parameters

associated with the last menu to be executed and simply sets them up again with-

out presenting the menu on the screen again.

The REN command

Syntax: REN <filename> <new name>

The REN command allows you to rename a DOS file without having to use the

DOS command. IF OK may be used to test whether or not the command was

successful. For example:

REN "MYFILE" "HISFILE"

The REPLACE command

Syntax: REPLACE <%var> <from> <to>

This command scans the specified variable for occurrences of the <from> string

and replaces each instance with the <to> string. If this would result in a loop

(because the <from> string is contained in the <to> string) then no action is

taken. For example:

ASSIGN %1 "I can walk the walk"

REPLACE %1 "walk" "talk"

 Commands

Gallagher & Robertson Glink: Script Reference 141

would produce "I can talk the talk" in variable %1. The replacement

is repeated as many times as necessary, for example:

ASSIGN %1 "1,,,2,,3,,,,,4"

REPLACE %1 ",," ","

would give "1,2,3,4" in variable %1.

The RESET command

Syntax: RESET <event type>

This command resets the effect of an active ON statement. Available values for

<event type> are:

INACTIVITY

KEY

OFFLINE

SESSION

TIMEOUT

TURN

Note that RESET KEY resets ON actions for all keys. To reset a single action use

the RKEY command. RESET TIMEOUT resets not only the ON TIMEOUT

action, but also sets the TIMEOUT value back to its default of 60 seconds.

The RETCALL command

Syntax: RETCALL

This command allows you to return directly to a calling script, even when you are

in a routine several 'levels' down because of GOSUBs in the current script. Nor-

mally you use RETURN to exit from both GOSUB and CALL, but this command

allows you to 'ignore' GOSUBs that are still active since the last CALL.

Commands

142 Glink: Script Reference Gallagher & Robertson

The RETURN command

Syntax: RETURN

This command returns control either from a procedure that was called with a

GOSUB command or from a script file that was called with the CALL command.

(If no GOSUB or CALL is active, then RETURN will terminate script execution).

In the case where a script executes all the way to the end of a script file, an

automatic RETURN will be done for you after the last statement in the script file

has been executed.

The RFORM command

Syntax: RFORM <%var> <number>

This command allows you to read a field from a VIP form that is on-screen when

the command is executed. For example:

RFORM %3 12

This reads the 12th variable field from the currently active form and returns the

result in the %3 variable. If <number> is larger than the number of fields in the

form then a null string will be returned. If <number> is zero then the current

field will be returned, defined as the field containing the cursor (if the cursor is

positioned in a variable field) or the field immediately preceding the cursor (if

the cursor is not currently inside a variable field).

The RKEY command

Syntax: RKEY <keyname>

The RKEY command resets an action that has been specified with an ON KEY

keyname statement (to reset all such actions use RESET KEY). <keyname> is

specified using the same mnemonics as are used for the ON KEY and KEYS

statements (a list is provided in the description of the KEYS statement).

 Commands

Gallagher & Robertson Glink: Script Reference 143

The ROLL command

Syntax: ROLL {ON|OFF}

This command allows you to turn 'roll mode' on and off. A terminal operating in

'roll mode' will scroll the picture off the screen when receiving data past the

bottom of the screen. A terminal operating with roll mode disabled will give an

error if a program attempts to write past the end of the screen.

The RSBK command

Syntax: RSBK <%var> <row> <column> <length>

This command allows you to 'read' a string of characters directly from the

scrollback buffer. <row> in the above refers to the row number in the scrollback

buffer, where row zero is the first row that has scrolled off the screen, row one is

the row that scrolled off prior to that, and so on. In other words, the higher the

row number, the earlier the row. If you try to access a row that has scrolled out of

the scrollback buffer then the RSBK command will return a null string. Accessing

the scrollback buffer with a negative line number will access the corresponding

line in the current screen.

A 'side-effect' of the RSBK command when used in the Windows versions is that

any mark that may be in the scrollback window will be removed.

The following Windows example uses the internal variables providing infor-

mation about a marked area in the scrollback buffer in order to extract the actual

marked data and write it to a file. Note that the 'top' coordinate returned by

$MSY1 will in practice be larger than the 'bottom' coordinate, in that the scroll-

back buffer is numbered in reverse order.

 IF ($MSX1 EQN 0) GOTO NoMark

 ASSIGN %1 $MSX2

 SUBTRACT %1 $MSX1

 ADD %1 1

 ASSIGN %2 $MSY1

 ASSIGN %3 $MSY2

 ASSIGN %4 $MSX1

 FOPEN #1 APPEND "SAVE.TXT"

 WHILE (%2 GEN %3)

 RSBK %5 %2 %4 %1

 FWTLINE #1 %5

Commands

144 Glink: Script Reference Gallagher & Robertson

 SUBTRACT %2 1

 ENDWHILE

 FCLOSE #1

 RETURN

:NoMark BEEP

The RSCR command

Syntax: RSCR <%var> <row> <column> <length>

This command allows you to 'read' a string of characters directly from the screen

at a given position. The characters on the screen at the given location are placed

into the defined script variable. If you wish to use this command to read data

from the status line you may do so, but must specify a row number of zero rather

than the actual row as counted on the screen.

A 'side-effect' of the command when used in the Windows versions is that any

mark that might currently be on the screen will be removed.

The following Windows example uses the internal variables providing infor-

mation about marked areas on the screen in order to collect the data from the

screen and write it to a file:

 IF ($MX1 EQN 0) GOTO NoMark

 ASSIGN %1 $MX2

 SUBTRACT %1 $MX1

 ADD %1 1

 ASSIGN %2 $MY1

 ASSIGN %3 $MY2

 ASSIGN %4 $MX1

 FOPEN #1 APPEND "SAVE.TXT"

 WHILE (%2 LEN %3)

 RSCR %5 %2 %4 %1

 FWTLINE #1 %5

 ADD %2 1

 ENDWHILE

 FCLOSE #1

 RETURN

:NoMark BEEP

 Commands

Gallagher & Robertson Glink: Script Reference 145

The SCAN command

Syntax: SCAN <string> <string>

This is used to check whether a given string contains another one. The OK vari-

able (see the IF command) is used to check whether it did or not. For example:

SCAN %5 "A"

IF OK GOTO FOUND

checks whether or not script variable number 5 contains an uppercase A. Additio-

nally, the $SCAN internal variable will contain the offset at which the string was

found (or zero when it was not found).

The SCREEN command

Syntax: SCREEN {ON|OFF}

The SCREEN OFF command may be used to turn off ALL screen updating,

including file transfer windows, status line updates, and the like. Updating is re-

enabled with SCREEN ON. The screen will in any case be turned on when the

script completes; also if any local key is pressed. This is to ensure that inadvert-

ent use of a SCREEN OFF command without an accompanying SCREEN ON

doesn't confuse you completely. The screen will still be updated in background

and SCREEN ON will restore the current background image when used. If you

need to turn the screen off more permanently, with absolute control over when it

is turned on again, use the SET UPDATE command instead.

Commands

146 Glink: Script Reference Gallagher & Robertson

The SECURE command

Syntax:
 SECURE{SCROLLBACK|LINEBUFFER|EDIT|ALL}{ON|OFF|ERASE}

The SECURE command is provided in order that a script may prevent access to

data that otherwise might represent a potential security risk. The data referred to

in the above syntax relates to the scrollback buffer used for saving data that has

scrolled off the screen, the line buffer that shows raw data and that may be

accessed from the line menu, and the edit buffer that may be used for command

recall. For each of the above, the ERASE option will remove the entire contents

of the buffer, while ON and OFF toggle logging of data into the buffer. The ALL

option will perform the desired action for all three buffers simultaneously. For

example, to erase everything that the system has logged so far you could use:

CLEAR

SECURE ALL ERASE

The CLEAR in the above is used in order to remove data from the current screen,

which would otherwise possibly scroll off into the scrollback buffer at some later

stage. If the SECURE LINEBUFFER ON command is used this will also disable

use of debug mode.

The SEND command

Syntax: SEND <string>

This is used to send a defined string of characters to the host, with no terminator.

For example:

SEND "L FRED^M"

If you are working in VIP TEXT or FORMS mode then the string will not be sent

as such. Instead it will be given to the emulation procedures that will perform the

transmission when SNDLINE is used or the transmit key is pressed. To actually

send a string directly to the communications line in such a situation, use the

TRANSMIT command.

 Commands

Gallagher & Robertson Glink: Script Reference 147

The SEPMENU command

Syntax: SEPMENU

This command adds a horizontal separating line between menu items built with

the BUILDMENU and ADDMENU script commands. It should be placed between

the ADDMENU statements for those items you wish to separate.

The SERVER command

Syntax: SERVER {FINISH|LOGOUT|START|<character> <parameter>}

This is normally used to terminate a dialog with a Kermit server. One of the first

two commands would typically be used after a number of GETFILE KSERVE

and PUTFILE KSERVE commands. You may also issue 'generic' server com-

mands using the form:

SERVER <character> <parameter>

Here <character> is the identifier for the generic command. For example, if

the remote server supports the generic 'erase' command you could erase a file

using:

SERVER "E" "MYFILE.EXT"

You may also start a local Kermit server using the command:

SERVER START

The SET command

Syntax: See below

The SET command is a general-purpose command with many options that may

be used to set various configuration parameters. More detailed explanations of

each of these will be found in the Configuring the emulator chapter in the

Administrator's Guide. Here we will just give an indication of which parameter is

being set. The following SET commands are currently implemented:

Commands

148 Glink: Script Reference Gallagher & Robertson

SET 3D {ON|OFF}

Toggles the setting for the 3D variable effect.

SET 3D COLORS {GLINK|WINDOWS}

Toggles the setting for use of Glink or Windows colors when using 3D

variables.

SET 3D CARET {GLINK|WINDOWS}

Toggles the setting for use of Glink or Windows caret when using 3D

variables.

SET 3D FIXDKU {ON|OFF}

Toggles the 'fix DKU attributes' option.

SET 3D UNDERLINE {ON|OFF}

Toggles the setting for stripping of underline attributes when using 3D

variables.

SET ALTERNATE <servername>

Sets the name for the alternate server on Ggate connections.

SET ASCII CRCAPTURE {ON|OFF}

Toggles the 'capture delimiter' option in the file transfer setup menu.

SET ASCII EXPAND {ON|OFF}

Toggles the 'ASC expand blanks' option in the file transfer setup menu.

SET ASCII HANDSHAKE <character>

Sets the 'ASC handshake char' in the file transfer setup menu (the character

must be specified as a decimal number).

SET ASCII LPACE <tenths>

Sets the 'ASC line pacing' value in the file transfer setup menu.

SET ASCII PACE <milliseconds>

Sets the 'ASC pacing' value in the file transfer setup menu.

SET ASCII XLCR {STRIP|CR|LF|CRLF}

Sets the 'ASC CR translation' option in the file transfer setup menu.

SET ASCII XLLF {STRIP|CR|LF|CRLF}

Sets the 'ASC LF translation' option in the file transfer setup menu.

 Commands

Gallagher & Robertson Glink: Script Reference 149

SET BREAK {ENABLE|DISABLE}

Enables or disables the ability to send a break to the host.

SET BUTTON {ON|OFF}

Turns the button bar on or off.

SET BUTTON FONT "fontname" fontsize

For the Windows versions only, sets the font used for buttons on the button

bar created with the script BUTTON command.

SET BUTTON HELP n "help text"

For the Windows versions only, sets the help text for a button on the button

bar created with the script BUTTON command.

SET BUTTON {NUMBER|ROWS} <number>

For the Windows versions only, sets the number of buttons (or the number of

rows) in the button bar, containing buttons set with the script BUTTON com-

mand. See the description of the BUTTON command for more information, on

page 38.

SET CAPS {ON|OFF}

Sets or resets the CAPS LOCK keyboard status. Note that this is not

supported on Win95/98/ME platforms.

SET CAPTION {ON|OFF}

Turns the caption bar on or off.

SET CASE {ON|OFF}

Determines whether or not comparisons should be case sensitive (default is

ON). This affects all commands that compare strings, including patterns and

received strings. Note that the current case sensitivity setting may be retrieved

from the $CASE built-in variable.

SET COLOR SCREEN <color>

SET COLOR STATUS <color>

Sets the basic emulator screen colors and the colors for the status line

 Valid syntax for <color> in the above is:

 [BRIGHT] foreground ON background

 where foreground and background are chosen from:
 BLACK BLUE GREEN CYAN RED MAGENTA YELLOW WHITE

 For example:
 SET COLOR SCREEN BRIGHT WHITE ON BLUE.

Commands

150 Glink: Script Reference Gallagher & Robertson

SET COMWARNING { ON | OFF }

Controls whether or not serial port conflicts with other applications should

give a warning message (this will also depend on your Windows settings

otherwise). Typically, this command would be used to disable the message

from Windows saying that the port is in use by another application.

SET CONNECT {ENABLE|DISABLE}

Enables or disables the ability to connect to a host.

SET CTABS {ON|OFF}

Controls the 'clipboard with tabs' option in the menu bar.

SET DBGFILE filename

Specifies the name for the line debug file (see DEBUG ON/OFF). This

command only has an effect the next time line debugging is turned on (if line

debugging is already on it will continue on the current line debugging file).

SET DEBUGFILE filename

Specifies the name for the debug file (see STRACE ON/OFF). This command

only has an effect the next time debugging is turned on (if debugging is

already on it will continue on the current debugging file).

SET DELIMITERS delimiters

Sets delimiters for separation of words on-screen (this may also be set in the

screen options configuration). These delimiters are used to decide how

marking words in the main screen and scrollback screen will be done when

they are double-clicked, and will also affect the behaviour of the GETWORD

script command. Current delimiters are available in the $DELIMITERS

variable.

SET DEVICE "devicename"

Sets the LU device name for those TN3270 or TN5250 servers that support

selection of device by name.

SET DISCONNECT {ENABLE|DISABLE}

Enables or disables the ability to disconnect from a host.

SET DKUCOLOR {1M|4A|4B|7Q|7G}

Sets the color mode for the DKU emulation.

SET DKUMODEL {7107|7211}

Sets the terminal model for the DKU emulation.

 Commands

Gallagher & Robertson Glink: Script Reference 151

SET DOSSHOW {<option>}

Specifies how a program started with the DOS command should be displayed.

The same options are available for this command as are provided for the

WINDOW command.

SET DOSWAIT {YES|NO}

Specifies whether Glink should wait for an external command to complete

before continuing. When an external program is started (using the DOS script

command) from a script run by the Windows versions, the script will continue

running in parallel with the external program. Setting this option will stop

Glink from running until the other window has been closed.

SET DYNAMIC rows columns

Sets the IBM-DYNAMIC terminal model and specifies rows and columns for

the alternate screensize.

SET EXIT {ENABLE|DISABLE}

Enables or disables the ability to terminate the emulator.

SET FCLICK X1 Y1 X2 Y2 "url"

Defines an area of the frame wallpaper that may be clicked. The X and Y

coordinates relate to the original (unstretched) bitmap coordinates.

SET FKEYBAR {ON|OFF}

Turns the function key bar on or off.

SET FOCUS {ENABLE|DISABLE}

Enables or disables the ability to switch to the Glink window.

SET FONT <height> <width>

Sets the font size (in pixels) for the current Glink window.

SET FRAME {LEFT|RIGHT|TOP|BOTTOM} <size>

Sets the size of the frame around the emulation window

SET FRAME {PIXELS|PERCENT}

Specifies whether the frame size is in pixels or as a percentage of the main

window.

SET FRAMEPAPER filename

Sets the name of the file to use as wallpaper around the emulation frame.

Commands

152 Glink: Script Reference Gallagher & Robertson

SET FTP ADDRESS host_address

Sets the host IP address to be used for ftp transfers using the GlinkFTP client.

The built-in variable $FTPADDRESS returns the current setting for this

option.

SET FTP ASCII

Sets ASCII mode for ftp transfers using the GlinkFTP client. The built-in

variable $FTPTRANSFER returns a value of 1 when this option is set.

SET FTP AUTO

Sets automatic selection of transfer mode (based on file extension) for ftp

transfers using the GlinkFTP client. The built-in variable $FTPTRANSFER

returns a value of 0 when this option is set.

SET FTP BINARY

Sets BINARY mode for ftp transfers using the GlinkFTP client. The built-in

variable $FTPTRANSFER returns a value of 2 when this option is set.

SET FTP CONFIG filename

Sets the configuration file name to be used for ftp transfers using the

GlinkFTP client. The built-in variable $FTPCONFIG returns the current

setting for this option.

SET FTP DEFAULT hostname

Sets the host name (as configured in GlinkFTP) to be used as the default host

for ftp transfers using the GlinkFTP client. The built-in variable

$FTPDEFAULT returns the current setting for this option.

SET FTP HOST hostname

Sets the host (as configured in GlinkFTP) to be used for ftp transfers using

the GlinkFTP client. The built-in variable $FTPHOST returns the current

setting for this option.

SET FTP LOCAL8

Sets LOCAL8 mode for ftp transfers using the GlinkFTP client. The built-in

variable $FTPTRANSFER returns a value of 3 when this option is set.

SET FTP NORM

Resets passive mode for ftp connections using the GlinkFTP client. The built-

in variable $FTPMODE returns a value of 0 when this option is set.

 Commands

Gallagher & Robertson Glink: Script Reference 153

SET FTP NOWAIT

Tells the script that it may continue execution after starting an FTP transfer.

The transfer continues in parallel with script execution, and you may use the

$FTP built-in script variable to check on its current status (a return of zero

means that the transfer is complete).

SET FTP PASSWORD password

Sets the login password for ftp transfers using the GlinkFTP client. The built-

in variable $FTPPASSWORD returns the current setting for this option.

SET FTP PASV

Sets passive mode for ftp connections using the GlinkFTP client. The built-in

variable $FTPMODE returns a value of 1 when this option is set.

SET FTP SILENT

Sets silent mode (no messages or display) for ftp transfers using the GlinkFTP

client. The built-in variable $FTPSILENT returns a value of 1 when this

option is set.

SET FTP USER username

Sets the login user name for ftp transfers using the GlinkFTP client. The built-

in variable $FTPUSER returns the current setting for this option.

SET FTP VERBOSE

Turns off silent mode for ftp transfers using the GlinkFTP client. The built-in

variable $FTPSILENT returns a value of 0 when this option is set.

SET FTP WAIT

Tells the script to wait for FTP transfers to complete before continuing (this is

the default).

SET IBMMODEL model_name

Sets the IBM model name.

Valid IBM3270 models are 3279-2, 3279-3, 3278-1, 3278-2,
3278-3, 3278-4, 3278-5, 3279-2E, 3279-3E, 3278-1E,

3278-2E, 3278-3E, 3278-4E, 3278-5E, DYNAMIC and

(printer) 3278-1.

Valid IBM5250 models are IBM5250 model 3179_2, 3180_2,
3196_A1, 3477_FC, 3477_FG, 5251_11, 5291_1, 5292_2,

5555_C01, 5555_B01, 3812_1 and 5553_B01.

Valid IBM3151 models are 3151_11, 3151_31, 3151_41,

3151_51 and 3151_61.

Commands

154 Glink: Script Reference Gallagher & Robertson

SET IDLE <seconds>

Specifies the time (in seconds, tenths of seconds may be specified). Glink

should wait for the line to be idle after a match is found when using the

CONVERSE, MATCH, RECEIVE or RECS commands. Depending on the

setting of SET IPATTERN at the time the pattern was set, the delay may

also be applied before execution of WHEN statements when patterns have been

matched. This may be found useful when programming scripts that talk to

hosts that require an additional delay before new input is sent, or when the

host appends additional characters to the end of the string being waited for.

Note that the built-in $IDLE variable provides you with the current value of

the idle timer.

SET IPATTERN {ON | OFF}

Specifies whether the SET IDLE timer should be applied before executing

the WHEN statement when a pattern is matched. The default is OFF (in other

words the timer will be applied), but for compatibility with some earlier

releases, which did not wait in this situation, you may find that SET

IPATTERN ON is needed. The setting is saved on a per-pattern basis and

the setting that applies to any particular pattern is that which applied when the

pattern itself was set.

SET INPUT {ENABLE|DISABLE}

Enables or disables input into the Glink window. Note that if you disable

input in this way then your script must reenable it before terminating or the

Glink window will be locked.

SET INSID "name"

Sets the host installation ID for DNTD interfaces.

SET ISTATUS {AUTO | SHOW | HIDE}

Specifies how the status of a file operation that accesses the internet should be

shown. The default (which will be set after each such operation) is to not

show a status window until a transfer has been running for at least 5 seconds.

If you set it to SHOW then the status window will appear immediately,

whereas if you set it to HIDE then the status window will never be shown.

Note that if the window is shown then the user will have the opportunity to

interrupt the transfer, and if you wish to avoid this you should use HIDE.

Note that the current status key is available in the $ISTATUS built-in variable

SET KBDBAR {ON|OFF}

Turns the keyboard bar on or off.

 Commands

Gallagher & Robertson Glink: Script Reference 155

SET KERMIT ADDCTRLZ {ON|OFF}

Toggles the 'Add Control-Z' option in the Kermit setup menu.

SET KERMIT CMP8 {ON|OFF}

Toggles the 'Enable DPS8 compression' option in the Kermit setup menu.

SET KERMIT EOFCTRLZ {ON|OFF}

Toggles the 'Ctrl-Z means end of file' option in the Kermit setup menu.

SET KERMIT FORCEFTRAN {ON|OFF}

Toggles the 'Non-standard FTRAN' option in the Kermit setup menu.

SET KERMIT NOXLATE {ON|OFF}

Toggles the 'No file name translation' option in the Kermit setup menu.

SET KERMIT OVERRIDE {ON|OFF}

Toggles the 'Override host packet size' option in the Kermit setup menu.

SET KERMIT PACE <milliseconds>

Sets the 'Kermit pacing' option in the Kermit setup menu.

SET KERMIT PACKETSIZE <number>

Sets the 'Maximum long packet size' parameter in the Kermit setup menu.

SET KERMIT QUOTE <character>

Sets the 'Kermit host quote' option in the Kermit setup menu.

SET KERMIT RETRIES <number>

Sets the 'Kermit retries' option in the Kermit setup menu.

SET KERMIT SOH <character>

Sets the 'Kermit packet header' option in the Kermit setup menu. The charac-

ter must be specified as a decimal number.

SET KERMIT TABXPAND <number>

Sets the 'Tab expansion' option in the Kermit setup menu.

SET KERMIT TIMEOUT <number>

Sets the 'Kermit timeout' option in the Kermit setup menu.

SET KERMIT WINDOWSIZE <number>

Sets the 'Maximum window size' in the Kermit setup menu.

Commands

156 Glink: Script Reference Gallagher & Robertson

SET KEYBOARD {ON|OFF}

Allows you to disable the keyboard completely. Keystrokes typed while SET

KEYBOARD OFF is in effect will not be read by the emulator but left in the

keyboard input buffer until SET KEYBOARD ON is executed (or until you

leave the script or exit from Glink)

SET LOOPCHECK {ON|OFF}

There is an internal loop detection routine inside the script module, which

attempts to ensure that a tight loop inside a script does not totally disable the

emulator. In certain cases, this can cause undesirable side effects, typically in

cases where there is a large amount of menu interaction with the user with no

line activity. This command allows you to disable the checking.

SET MENU {ON|OFF}

Turns the menu bar on or off.

SET MARKMODE {OLD|NEW}

Controls the function of the MARK command.

SET MODE APCURSORPAD {ON|OFF}

Toggles the 'Cursor application mode' option in the toggles menu.

SET MODE APKEYPAD {ON|OFF}

Toggles the 'VT100 keypad mode' option in the toggles menu.

SET MODE AUTOLF {ON|OFF}

Toggles the 'Auto LF out' option in the toggles menu.

SET MODE DESTBS {ON|OFF}

Toggles the 'Destructive backspace' option in the Emulator setup menu.

SET MODE GRAPHICS {ON|OFF}

Toggles the 'Graphics mode' option in the toggles menu.

SET MODE INSERT {ON|OFF}

Toggles the 'Insert mode' option in the toggles menu.

SET MODE SSM {ON|OFF}

Toggles the 'Space suppression' option in the toggles menu.

SET MODE TYPEAHEAD {ON|OFF}

Toggles the 'Typeahead mode' option in the toggles menu.

 Commands

Gallagher & Robertson Glink: Script Reference 157

SET MODE VIP {CHAR|TEXT|FORM|TXRT}

Sets the VIP emulation mode to CHARacter, TEXT, FORMs or TX-RET

mode.

SET MODE WRAP {ON|OFF}

Toggles the 'Autowrapping' option in the toggles menu.

SET MRECT {ON|OFF}

Toggles the 'Mark Rectangles' option in the edit menu.

SET NOISELEVEL <number>

Sets the 'Noise level' option in the General setup menu.

SET NOREMOTE {ON|OFF}

Toggles the 'Ignore remote commands' option in the General setup menu.

SET NUML {ON|OFF}

Sets or resets the NumLock keyboard status.

SET PRINTER <printer_name[,driver,port]>

Changes the current printer and sets the OK variable. Note that the current

printer is available in the $PRINTER built-in variable.

SET PROCESS {ON|OFF}

Determines whether input from the line should be processed by the emulator

while the script is running.

SET RELINQUISH {ON|OFF}

Determines whether the script processor should release control to other appli-

cations while executing. The default for this option is ON, but you may wish

to turn it OFF when executing time-critical code that has to run as fast as pos-

sible. The effect of turning the relinquish option OFF will vary from machine

to machine.

SET RESIZE {NONE|FONT|WINDOW}

Specifies how the window should react when resized. NONE changes the

displayed area (using scrollbars), FONT will change the font size to fit in the

current window, while WINDOW will change the number of rows and

columns displayed.

SET RESOURCE <resource_name>

Commands

158 Glink: Script Reference Gallagher & Robertson

Sets the TNVIP resource or DSA/DIWS host profile name for the

communications interface. Note that the current server name is available in

the $RESOURCE built-in variable. If you wish to use the defined DSA/DIWS

profile for a particular host but override one or more of the host parameters

then you may do this by including the relevant parameters after the host name.

For example:

SET RESOURCE "DPS8 –DNPH02"

For DNTD it will set the host INSID, while for X.25 and similar services it

may be used to specify the name of the communications server used to reach

the host.

SET RLFILTER characters

Controls filtering for the script RCVLINE command. Characters specified

with this option will be stripped from the data returned by the command. The

default setting for the option is LF, NUL, DEL and ETB.

SET RLTERM characters

Controls termination characters for the script RCVLINE command.

Characters specified with this option will cause the receive operation to

terminate. The default setting for the option is CR, ETX and EOT.

SET ROUND {ON|OFF}

Controls whether fractional numbers are rounded or truncated when used in

integer contexts and when using the script TRUNCATE command. Note that

the current rounding status is available in the $ROUND built-in variable.

SET SCREEN LENGTH <number>

Sets the number of lines for the current emulation. Only up to the maximum

number of lines specified in the /Rnn startup parameter may be used.

SET SCREEN ONTIME {ON|OFF}

Toggles the 'Clock shows time online' option in the Modem setup menu.

SET SCREEN SBSAVE {ON|OFF}

Toggles the 'CLR save in scrollback' option in the Screen setup menu.

SET SCREEN UPDATE {DIRECT|RETRACE|BIOS}

Sets the 'Screen Update' option in the Screen setup menu.

SET SCREEN WIDTH <number>

Sets the number of columns to use on the emulation screen. Any number of

columns between 40 and 132 may be specified.

 Commands

Gallagher & Robertson Glink: Script Reference 159

SET SERVER <server_name>

Sets the server name or IP address for the TCP communications interface.

Note that the current server name is available in the $SERVER built-in

variable. Note also that on X.25 and similar interfaces this command will set

the X.25 address or equivalent; if you actually intend to change the name of

the comms server then the SET RESOURCE command should be used.

SET SHARE {COMPATIBILITY|READ|WRITE|RW|EXCLUSIVE}

Specifies the sharing mode for the next FOPEN script command.

SET SILENT {ON|OFF}

Toggles the 'Silent mode' option in the General setup menu.

SET SPATH {ON|OFF}

Sets DOS command execution to perform searching in the PATH before

execution via COMMAND.COM (see the DOS command).

SET SSH PASSWORD <password>

Sets the password for the SSH server.

SET SSH PKEY <keyname>

Sets the private key used in the SSH PuTTY interface. Note that the current

private key is available in the $PKEY built-in variable.

SET SSH SERVER <name>

Sets the server name for the SSH server.

SET SSH USER <name>

Sets the user name for the SSH server

SET SSL [ENABLE|DISABLE]

Enables or disables use of secure sockets.

SET SSL CLIENT AUTHENTICATE [ENABLE|DISABLE]

Enables or disables client authentication for secure sockets.

SET SSL CLIENT CERTIFICATE <name>

Sets the name of the client certificate to use for client authentication.

SET SSL KEYEXCHANGE [AUTO|RSA|DH]

Sets the key exchange protocol to use for secure socket connections.

SET SSL PROTOCOL [AUTO|PCT1|SSL2|SSL3|TLS1]

Sets the protocol to use for secure socket connections.

Commands

160 Glink: Script Reference Gallagher & Robertson

SET SSL SERVER VALIDATE [ENABLE|DISABLE]

Enables or disables server validation.

SET SSL SERVER VALIDATE NAME [ENABLE|DISABLE]

Enables or disables server name validation.

SET SSL SERVER VALIDATE NAME [CURRENT|IS <name>]

Sets the machine name to use for server validation.

SET STATUS {TRUE|FALSE}

Sets the internal flag (see IF TRUE/FALSE) to TRUE or FALSE.

SET STS {ON|OFF}

Turns the status bar on or off.

SET TCP <protocol>

Sets the protocol to be used on the TCP/IP stack. Valid protocols are.
TELNET, RLOGIN, GWDIWS, GWDSA, TNVIP, TN3270,

TN5250 and RAW.

SET TCS {OFF|ON|NONE}

Sets the TCS enable option in the DKU emulator setup menu (inactive, enable

or disable).

SET TERM {TRUE|FALSE}

Enables (or disables) the termination script ($$TERM.SCR). Note that your

termination script should execute SET TERM TRUE if it wishes to abort

termination and still be called if further attempts are made by the user to

terminate the emulator.

SET TOOLBAR BUTTON n image function

Sets toolbar button number 'n'. 'image' is the internal number of the

bitmap image to use in the button; these are numbered from 51 and up in the

same order as they are presented in the toolbar setup menu. If you have

supplied additional images for the toolbar in a GLBITMAP.DLL file (see the

toolbar setup help) then you may access these by adding 1000 to the number

of the bitmap in your add-in DLL. 'function' is the internal number of

the function to assign to the button; please refer to the online help for a

complete table of these.

SET TOOLBAR HELP n "help text"

Sets the help text for a button on the toolbar. These are defined in exactly the

same way as for buttons in the button bar created with the script BUTTON

command.

 Commands

Gallagher & Robertson Glink: Script Reference 161

SET TOOLBAR {ON|OFF}

Turns the toolbar on or off.

SET TOOLBAR SIZE n

Sets the number of buttons in the toolbar.

SET TRANSFER ANSI

Resets the Text files in OEM charset option in the Text transfer setup menu.

SET TRANSFER COMMAND <command>

Sets the host file transfer command in the file transfer setup menu.

SET TRANSFER OEM

Sets the Text files in OEM charset option in the Text transfer setup menu.

SET TRANSFER OVERWRITE {ON|OFF}

Sets the file overwrite option in the File transfer setup menu.

SET TRANSFER PAUSE {ALWAYS|NEVER|FAILED}

Sets the 'Wait after transfer' option in the File transfer setup menu.

SET TSM8 {ON|OFF|TSM|TSS}

Sets the TSM8 enable option in the VIP emulator setup menu (ON, OFF) or

alternatively sets TSM8 into TSS or TSM mode (TSM, TSS).

SET TRCWIN {ON|OFF}

Enables or disables the debug trace window for script source. See the TRACE

command for more details.

SET TTYPE terminal_type

Sets the terminal type for the telnet, rlogin and TNVIP protocols over

TCP/IP. You should restrict your choices to terminal types recognized by the

relevant protocol, especially for TNVIP (see the communications setup menu

for valid TNVIP types).

SET UPDATE {ENABLE|DISABLE}

This enables or disables screen updating. This is a permanent setting that can

only be changed with another SET UPDATE command, and thus overrides

the more usual SCREEN ON/OFF command.

Commands

162 Glink: Script Reference Gallagher & Robertson

SET UVTI <number>

Sets the return status for UVTI script execution (values between zero and 255

are permitted). The value is available either as a requestable DDE item or as

an immediate DDE advisement (see the DDE reference appendix to the

User's Guide).

SET WARNINGS {ON|OFF}

Enables or disables warning messages that might stop unattended scripts, for

example, the 'disk full' message.

SET WALLPAPER filename

Sets the current screen wallpaper.

SET WALLPAPER {SCROLL|STATIC|STRETCH|TILE}

Sets wallpaper attributes.

SET XFER {ENABLE|DISABLE}

Enables or disables the ability to perform file transfers.

The SETMACRO command

Syntax: SETMACRO <number> <string>

This is used to change the value of one of the keyboard macros. These are

numbered from zero to 999. By default, the first ten of these macros are loaded

on the ALT+0 to ALT+9 keys. For example:

SETMACRO 5 "New macro^M"

changes the value loaded onto the ALT+5 key to "New macro" and a carriage

return character. Macros from 10 to 63 may be accessed either by reconfiguration

of the keyboard, the button bar and the tool bar.

The SHELL command

Syntax: SHELL <command/file>

This command executes an application, or alternatively the application that is

associated with the file type of the specified file. For example:

SHELL "myfile.txt"

 Commands

Gallagher & Robertson Glink: Script Reference 163

would normally invoke notepad for the myfile.txt file, whereas

SHELL “notepad”

would just execute notepad. See also ADMSHELL if you need to invoke the

application as an administrator.

The SHOW command

Syntax: SHOW <string>

The SHOW command will display the string specified on the terminal, but in con-

trast to MESSAGE, will not follow the string with a CRLF sequence. The string

will not be sent to the host.

The SNDLINE command

Syntax: SNDLINE <string>

The same as the SEND command with the modification that a terminator (usually

CR or ETX) is also sent at the end of the string. This avoids the need for con-

tinual use of the ^M definition. If you are running in text or forms mode then

SNDLINE will 'transmit' the text rather than add a carriage return. The text will

however be displayed on the screen in that the standard emulation procedures are

used for this. If you need to send directly to the communications line without dis-

playing the text, use TRNLINE.

The SPEED command

Syntax: SPEED <speed>

This is used to set the speed of the communications line. It is only needed if you

need to change the speed from the setting that was used when the script was

started. For example:

SPEED 9600

The permitted values are the same as those displayed in the communications

setup menu.

Commands

164 Glink: Script Reference Gallagher & Robertson

The SPLIT command

Syntax: SPLIT <%var> <%var>

This command lets you split a string into two parts depending upon the string

contents. Given a command:

SPLIT %1 %2

then %1 is the string and %2 is the string to scan for inside %1. Note that literal

strings are not allowed here. If the string %2 is NOT contained in %1 then OK is

set false and the contents of %1 and %2 remain unchanged. If %1 does contain %2

then OK is set true, and the part of the string to the left of %2 inside %1 is moved

to %2, while the part to the right remains in %1. Both strings are changed, in

other words. This is probably best illustrated with an example:

ASSIGN %11 "1,2,3"

ASSIGN %12 ","

SPLIT %11 %12

After this operation, variable %11 will contain "2,3" and variable %12 will

contain "1".

The STITLE command

Syntax: STITLE <string>

This command is used to change the basic string used in the caption bar for the

scrollback window.

The STRACE command

Syntax: STRACE {ON|OFF}

This command turns debug mode on or off (same as toggling debug mode in the

File menu). Debug information is displayed in a separate window and includes

logging of data sent and received as well as other internal information that may of

use when debugging problems with the program.

 Commands

Gallagher & Robertson Glink: Script Reference 165

 The STRIP command

Syntax: STRIP {YES|NO}

This command may be used to turn stripping of parity from the communications

line on and off (see Communications Setup).

The SUBRIGHT command

Syntax: SUBRIGHT <%var> <string> <length>

This command allows you to extract the right-hand portion of a string into one of

the script variables (see SUBSTR below). <%var> is the number of the variable

in which the answer is to be placed, and <length> is the maximum number of

characters to extract from the right-hand end of <string>. If the string does

not contain that many characters then the answer will just be the entire string. For

example, if internal variable number 8 contained the value "ABCDEF" then the

command:

SUBRIGHT %1 %8 2

would place the value "EF" into variable number 1.

The SUBSTR command

Syntax: SUBSTR <%var> <string> <position> <length>

This command allows you to extract part of a string into one of the script

variables. <%var> is the variable in which the answer is to be placed,

<position> is the position of the first character to extract, and <length> is

the maximum number of characters to extract. If the string does not contain that

many characters then the answer will be cut short at the end of the string. For

example, if internal variable number 8 contained the value "ABCDEF" then the

command:

SUBSTR %1 %8 2 3

would place the value "BCD" into variable number 1.

Commands

166 Glink: Script Reference Gallagher & Robertson

The SUBTRACT command

Syntax: SUBTRACT <%var> <number>

The SUBTRACT command allows you to compute the difference between two

numbers. The first parameter must be a script variable, while the second may be a

script variable or a constant. The result of subtracting the second number from

the first is placed in the script variable specified first. For example:

SUBTRACT %5 144

subtracts 144 from the present contents of the %5 variable, leaving the result in

%5. Note that the result may be stored in exponential format to keep maximum

precision. If you need to print a result that may be outside the range 0.01 to

32767, you can use the TRUNCATE command to format the number in a more

suitable way. If the subtraction can be performed correctly then the OK variable is

set true. If not (because one of the two operands was non-numeric) then it's set

false.

The SWITCH command

Syntax: SWITCH <string>

The SWITCH command marks the start of a switch construct. These are used to

test the contents of a script variable (or built-in variable) for one of several alter-

natives. An example is probably the best way to introduce the SWITCH syntax:

SWITCH $KEYPRESS

 CASE "1"; MESSAGE "One"

 CASE "2"; MESSAGE "Two"

 CASE "3"; MESSAGE "Three"

 DEFAULT; MESSAGE "Invalid"

ENDSWITCH

 Commands

Gallagher & Robertson Glink: Script Reference 167

What's happening here is that we are using the SWITCH command to introduce a

block of statements, terminated with the ENDSWITCH statement. The SWITCH

command takes one parameter, which specifies the name of the variable to be

tested. It's followed by a series of CASE statements, which specify the alterna-

tives we wish to check on. These are checked one at a time until a match is

found, at which point the statements between the matching CASE and the next

CASE statement are executed. Only these statements are executed - when the next

CASE (or DEFAULT) is found then control goes straight to the statement follow-

ing the ENDSWITCH statement. The DEFAULT case is used only when none of

the preceding CASE statements produce a match, and it must be specified after all

the other CASE statements if it's used. Any number of statements may be used for

each CASE; if you in the course of the procedure for any particular CASE want to

skip immediately to the ENDSWITCH statement then you may use the

EXITSWITCH statement for this purpose. Note that unlike the corresponding C

language construct, control passes directly to ENDSWITCH as soon as a matching

case has been processed; if you want more 'C-like' functionality then use the

CSWITCH command instead of SWITCH.

SWITCH commands may be nested up to a maximum of 20 levels; there is no

limit on the number of CASE statements for each level.

The TCKEY command

Syntax: TCKEY <fk_number>

The TCKEY command applies to the Atlantis V8 interface only, and tells the

emulator to simulate the effect of pressing a shifted function key when connected

to a TCU/TCS. Some special values apply, besides the function key numbers. A

'reset' is given by key number 13, while in a TM environment you may use 13 for

'operator' and 14 for 'break'.

The TIMEOUT command

Syntax: TIMEOUT <seconds>

This tells Glink how long (in seconds) to wait before continuing when a

RECEIVE command is looking for a certain string from the host and doesn't find

it. The default value is 60 seconds if you don't change it with a command like:

TIMEOUT 30

Commands

168 Glink: Script Reference Gallagher & Robertson

Timeouts may be specified to a resolution of 0.1 seconds, in other words the

command:

TIMEOUT 1.2

is legal. The timeout set with this command will also affect the current timeout

value for any active ON TIMEOUT command.

The TITLE command

Syntax: TITLE <string>

This command is used to change the basic string used in the caption bar.

The TRACE command

Syntax: TRACE [<tenths>]

The TRACE command gives you a separate debugging window which will show

you the script that is currently executing and highlight the actual line that is

executing. Additionally there is a running display of the line number in the script

that is currently executing, shown in the status bar. If you are using nested scripts

then the TRACE command must be included in each script to be traced. The

TRACE logic has been written to add as little overhead as possible to the

execution of the script, but will of course run slightly more slowly than in the

case where TRACE has not been used. The TRACE command has an optional

numeric parameter. If this is present, it specifies a delay in units of tenths of a

second. The delay will be made between execution of each script line, and may

be found useful for following the path taken by more complex script operations.

If you prefer only to see the line numbers in execution without the additional

trace window you can use SET TRCWIN OFF to specify this. Additionally you

can use SET TRCWIN ON to enable the window from a called script where an

overlying script has removed the window (or the window had earlier been closed

manually).

 Commands

Gallagher & Robertson Glink: Script Reference 169

The TRANSMIT command

Syntax: TRANSMIT <string>

This command sends data to the host. Unlike SEND, no emulation will be done

on the local screen for VIP TEXT and FORMS modes; this may be useful for

sending data that you don't want to be visible on-screen.

The TRIM command

Syntax: TRIM {LEFT|RIGHT|BOTH} <%var>

This command removes leading and/or trailing spaces and control characters

from the specified script variable.

The TRNLINE command

Syntax: TRNLINE <string>

This command sends a message to the host. Like SNDLINE, the appropriate

terminator will be added to the message. Unlike SNDLINE, no emulation will be

done on the local screen for VIP TEXT and FORMS modes; this may be useful

for sending commands that you don't want to be visible on-screen.

The TRUNCATE command

Syntax: TRUNCATE <%var> <decimals>

The truncate command allows you to format the current contents of a script

variable with a given number of decimals. The command is basically designed for

use with the arithmetic operations ADD, SUBTRACT, MULTIPLY and DIVIDE,

which all will provide their output in exponential format (e.g. 1.000000000

E+11) for results outside the range 0.01 to 32767 in order to preserve precision

in partial results. The TRUNCATE command has two parameters: the script

variable to be formatted, and the number of decimals required. For example:

TRUNCATE %4 0

Commands

170 Glink: Script Reference Gallagher & Robertson

formats the present contents of %4 with no decimals. The OK variable is set by

this command depending upon whether the present contents of %4 actually are

numeric. By default, the TRUNCATE command will actually round the number to

the closest value; if you actually want truncation then you can get this using the

SET ROUND OFF command.

The TSMDIR command

Syntax: TSMDIR <string>

This command sets the name for both the TSM8 and TCS forms directory. This

is the base directory, not necessarily the actual directory used to store the forms,

which may be a subdirectory of this specified by the host.

The UCASE command

Syntax: UCASE <%var>

This command can be used to convert a variable into upper case (capital letters).

It just needs one parameter, the variable to be converted. For example:

UCASE %1

Note that for the conversion of 'high ASCII' characters to be performed correctly

then you must have defined your country code and codepage correctly, or some

characters may not be interpreted.

 Commands

Gallagher & Robertson Glink: Script Reference 171

The UNMENU command

Syntax: UNMENU

The UNMENU command removes the last menu presented on the screen by the

MENU command. This is an 'expert' command and should be used with care. It is

the user's responsibility to ensure that the menu is actually on the screen at the

time. If only one menu is active then the NOMENU command is to be preferred.

This particular command is provided to tackle the case where one menu has been

'tiled' onto another and you wish to make the return to the 'main' menu look more

professional. Note that the main menu in this case may not be executed again

until it has been removed from the screen or undefined results will occur. The

command provides for the case where some kind of 'information' window is

desired for the top level.

The UPLOAD command

Syntax: UPLOAD <string>

This command allows you to override the predefined upload directory, normally

to avoid having to switch to a particular directory containing the files you wish to

transmit to the host system. It is good practice to 'save' the current upload

directory before you start and restore it again when you are finished, thus:

ASSIGN %11 $UPLOAD

UPLOAD "C:\FILES\"

....

UPLOAD %11

The URLSHOW command

Syntax: URLSHOW <urlstring> <title>

This command invokes your default browser to display the URL specified in

<urlstring>. The <title> parameter is provided for compatibility with

Glink/Java, where it's used to specify a particular window in which to display the

URL. Note that if you specify the name of a file rather than a URL then Glink

will attempt to invoke whatever application has been configured as the default

for the file type in question. For example:

Commands

172 Glink: Script Reference Gallagher & Robertson

URLSHOW "http://www.gar.no"

See also the SHELL and ADMSHELL commands.

The WELCOME command

Syntax: WELCOME

The WELCOME command takes no parameters and quite simply shows the confi-

gured "welcome" menu. This is basically designed for use by the initialization

script $$INIT.SCR, which is supplied with the software and does the first-time

setup whenever the program is started for a non-existent configuration file.

The WHEN command

Syntax: WHEN <!pattern> <script command>

This command allows you to perform specific actions when one of your pre-

defined patterns is found coming from the line. This allows you to 'program' your

script without having to interrupt the normal 'flow'. Here <!pattern> is the

pattern number to search for and <script command> is any valid script com-

mand. For example, if the host sends the prompt 'More?' at the end of each 'page'

of output, and you wish to have your script send a carriage return every time it

'sees' this text then you could use the statements:

PATTERN !1 "More?"

WHEN !1 SNDLINE ""

It's important to understand that the WHEN statement above does NOT wait for

input from the host when it's executed in the script file. It tells Glink what to do

while the rest of the script is executing if the specified pattern is received (a

script consisting just of the two statements above would terminate immediately,

for example). Note that the comparison performed is by default case-sensitive,

but that this may be changed using the SET CASE OFF command. If SET

IDLE is in effect (and SET IPATTERN is OFF) then the idle delay will be

applied before the WHEN statement is executed. Note that this means that there is

a possibility that other patterns may be matched (and associated WHEN statements

executed) while the script is waiting for the host to become idle.

 Commands

Gallagher & Robertson Glink: Script Reference 173

The $WHEN internal variable always contains the number of the most recently

activated WHEN command. You may use this to provide a common routine for

several WHEN statements where much of the processing is common to several

patterns, testing on which pattern actually was received only when necessary.

The WHILE command

Syntax: WHILE <condition>

This is quite similar to the IF command, with the exception that the command

introduces a block of statements that should be executed repeatedly until the con-

dition specified in the WHILE statement fails. The end of the block is signalled

using the ENDWHILE command, giving the following structure:

WHILE <condition>

 (statements)

ENDWHILE

Any condition legal for an IF command may be specified for the WHILE con-

dition; see the IF command on page 92 for details. An example of the WHILE

command in use:

ASSIGN %1 11

WHILE (%1 LEN 20)

 FRDL #1 _1

 ADD %1 1

ENDWHILE

This assumes that a file has been opened for reading as file #1. The first line

assigns a value of "11" to variable %1. The WHILE statement tells us that the two

statements between it and the ENDWHILE are to be repeated so long as the value

of %1 is less than or equal to twenty. The two statements in question are reading

a line from the file into the variable whose number is contained in %1 and then

incrementing %1 by 1. The effect of this example is therefore to read ten lines

from the file into variables %11 to %20 inclusive.

Commands

174 Glink: Script Reference Gallagher & Robertson

The WINDOW command

Syntax: WINDOW <option>

This command gives the script control over the appearance of the main Glink

Window. The following are available for <option> in the WINDOW command:

HIDE Hides the window and passes activation to another window.

FLASH 'Flashes' the window once (whether as an icon or a normal

window). Repeat the command if necessary.

MAXI Activates the window and displays it as a maximized window.

MINI Minimizes the window and activates the top-level window in

the window-manager's list.

NORMAL Activates and displays the window. If the window was mini-

mized or maximized, it will be restored to its original size and

position.

NOTTOP Causes the window to revert to normal operation (see

WINDOW TOPMOST).

RESTORE Same as WINDOW NORMAL.

SHMINI Activates the window and displays it as iconic.

SHMN Displays the window as iconic. The window that is currently

active remains active.

SHOW Activates the window and displays it in its current size and

position.

SHNA Displays the window in its current state. The window that is

currently active remains active.

SHNOACT Displays the window in its most recent size and position. The

window that is currently active remains active.

TOPMOST Specifies that the emulator window should always remain on

top, even when not active.

Be careful with the WINDOW HIDE command - if your script hides the window

then it is also responsible for showing it again before terminating. Failure to do

this may result in Glink becoming inaccessible from the mouse and/or keyboard.

 Commands

Gallagher & Robertson Glink: Script Reference 175

The WKEY command

Syntax: WKEY

WKEY tells Glink to wait for the user to press any key before continuing. This

would typically be used just after presenting some message that you would like

the user to read before the script continues executing.

Commands

176 Glink: Script Reference Gallagher & Robertson

 DBOX Command

Gallagher & Robertson Glink: Script Reference 177

The DBOX command

The DBOX command allows you to define your own dialog boxes directly from a

script file, using most of the graphic controls supported by Windows, such as

check boxes, buttons, radio buttons and list boxes.

The general format of the DBOX command is as follows:

DBOX [MINIMIZE] X Y W H ["Caption"]

 [control definitions]

ENDDBOX ["HelpFile"]

If the MINIMIZE option is specified then the dialog box will be equipped with a

minimize button.

X and Y specify the initial position of the dialog box (relative to the current

position of the Glink window), while W and H specify the width and height. These

are all in 'dialog units', a special type of measurement designed to make positions

and sizes fairly independent of what size of screen the dialog box is to be dis-

played on. The optional caption text will be displayed in the caption bar of the

dialog box if provided.

If you would rather have the dialog box positioned centrally in the desktop

window rather than specify a particular position, then you can replace the X Y

specification in the above with the keyword CENTER.

If you don't wish to specify the size of the dialog box yourself, but have it 'fitted'

around the dialog box elements you define, then you can replace the W H specifi-

cation in the above with the keyword AUTO.

The optional help filename (if specified) must be the name of a valid Windows

help file (with the full path if necessary). This help file will be called if you press

F1 while in the dialog box. You may also define a specific Help button if you

wish.

DBOX Command

178 Glink: Script Reference Gallagher & Robertson

The definition of the dialog box has intentionally been designed to be as equi-

valent as possible to the way these are defined in other products (for example in

Windows SDK resource scripts). This should make it easy to 'import' dialog

boxes that you may already have defined elsewhere.

General

You should specify the contents of all variables needed for the dialog box before

you use the DBOX command. Once the DBOX command has been encountered

only valid dialog box commands will be accepted by the script compiler. Note

that the usual ways of specifying strings as concatenated text inside parentheses

may be used freely inside the definition of the dialog box.

Once you have set up all the necessary variables (and in some cases, files) you

can define the dialog box with the DBOX command. When the ENDDBOX com-

mand is reached the dialog box will be shown on the screen and can be used with

exactly the same keyboard and mouse functionality as any other dialog box in

Windows.

When you exit from the dialog box by pressing one of the buttons in the dialog

box then the script will continue at the statement after the ENDDBOX command.

At this point you can inspect the results in the different variables that were used

inside the dialog box. You may also inspect the value of the internal $DBOX vari-

able, which will contain the number of the button that was pressed to exit the

dialog. This will contain 1 if the 'OK' button was pressed or the user exited by

pressing enter, 2 if the 'Cancel' button was pressed or the user pressed the Escape

key, or the button number if another button was pressed.

If the 'Cancel' button was pressed then all variables used inside the dialog box

will contain their initial values. The $KEYPRESS variable will contain an Escape

character ("^[") in this case (whether the exit was performed with the keyboard

or the mouse). In other cases $KEYPRESS will contain a CR ("^M").

The one exception to the rule that the dialog box will be terminated is the help

button, which will call the defined help file (if any).

No actions will be performed by the dialog box other than returning values in the

script variables you have specified. So if you are using the dialog box to select a

file name, for example, any actions you wish to perform on the file must be

performed by the script itself after the dialog box has been executed.

 DBOX Command

Gallagher & Robertson Glink: Script Reference 179

If you have specified a new font for menus using the MFONT command then this

font will also be used for your own dialog boxes. The requirements for the

naming of the font are slightly more specific; but if the named font cannot be

used the dialog box will still be executed using the system font. Trial and error

will show you which MFONT statements are acceptable and which are not.

Here is an example of a script fragment using a dialog box to collect information

about a message to be sent into an online system, showing the use of most of the

different control types in practice. You may not understand all of the commands

used here immediately, but this gives an overview of what an actual dialog box

definition will look like in practice:

assi %1 "@ADDRESS.LST"

assi %2 ""

assi %3 "@F \TEMP*.*"

assi %4 0

assi %5 0

assi %6 1

mfont "Tahoma" 8

dbox 10 10 132 164 "Send Mail"

 ltext 6 4 120 10 "&Send to:"

 combobox 6 14 120 90 %1

 ltext 6 30 120 10 "S&ubject:"

 edittext 6 40 120 12 %2 hscroll

 ltext 6 56 120 10 "&File to send:"

 combobox 6 66 120 90 %3

 checkbox 20 82 120 12 "&Acknowledge" %4

 checkbox 20 94 120 12 "&Warning" %5

 groupbox 6 110 120 24 "&File type"

 radiobutton 25 120 50 12 "ANSI" %6 1

 radiobutton 75 120 50 12 "OEM" %6 2

 endgroup

 defpushbutton 25 140 36 18 "OK" 1

 pushbutton 75 140 36 18 "Cancel" 2

enddbox

This dialog box starts with a heading text and a combo box showing a list of

names, which are picked up from a local file and from which you can select the

name to use. After this we have an edit control (again with a heading) into which

the subject of the message can be entered. An option specifies that the text should

scroll horizontally if there is not room in the window shown on the screen. After

this, we have two checkboxes where you can turn on acknowledgement and

warning options. This is followed by a group with two radio buttons where the

file type can be selected. Finally, we have the familiar 'OK' and 'Cancel' buttons

at the bottom of the dialog box.

DBOX Command

180 Glink: Script Reference Gallagher & Robertson

The actual appearance of the dialog box on the screen may be found helpful in

making this clearer:

Dialog units

All positions and sizes used in a dialog box definition use 'dialog units'. One

dialog unit in the horizontal direction is set to one quarter of the average

character width of the font being used and one vertical unit to one eighth of the

average character height. This is the standard way of defining dialog box posi-

tions and sizes and helps avoid the problems involved in defining a dialog box

which will turn out approximately the same on screens of widely differing resolu-

tions and sizes.

A 'normal' height for a single line control like a checkbox or radio button is 12

dialog units. The width of such a control depends of course on what text is going

to be displayed. However, you can see from the above definition that somewhat

more than four times the number of characters you are going to use will be

roughly what is needed. In general, use more space than you think you will need

rather than less.

 DBOX Command

Gallagher & Robertson Glink: Script Reference 181

Dialog box controls

The following commands are used to define dialog box controls. These are the

only commands permitted to appear between the DBOX and ENDDBOX com-

mands, and are not valid anywhere else in a Glink script. Indirection of variables

is not permitted in those places where Glink variables are referenced.

Command summary

AUTOGROUP "Text" [options]

BBUTTON X Y W H "Text" number [options]

BITMAP X Y W H "Text"

CHECKBOX X Y W H "Text" %N [options]

COMBOBOX X Y W H %N [options]

CTEXT X Y W H "Text" [options]

DEFPUSHBUTTON X Y W H "Text" number [options]

EDITTEXT X Y W H %N [options]

ENDGROUP

ENDHGROUP

ENDVGROUP

GROUPBOX X Y W H "Text" [options]

HGROUP X Y W H

IBUTTON X Y W H "Text" number [options]

ICON X Y W H "Text"

LISTBOX X Y W H %N [options]

LTEXT X Y W H "Text" [options]

PUSHBUTTON X Y W H "Text" number [options]

RADIOBUTTON X Y W H "Text" %N number [options]

RTEXT X Y W H "Text" [options]

SIZEBUTTON X Y W H "Text" DW DH [options]

TRACKBAR X Y W H %N LV HV [options]

VGROUP X Y W H

X Y defines the position (in dialog units) relative to the dialog box itself, where

"0 0" is the top left corner of the box (not including the caption or the frame). W

H defines the width and height of the control (again in dialog units). Any or all of

these may be specified using script variables rather than constants.

NOTE: if you are defining a horizontal or vertical group using the HGROUP or

VGROUP command then only the width or the height will be defined with each

control in the group.

DBOX Command

182 Glink: Script Reference Gallagher & Robertson

In place of X Y you may also use the keyword DOWN or RIGHT. If you use one

of these the control will be placed immediately below (or immediately to the right

of) the previous control. Additionally you may specify a positive or negative

offset from this, for example:

PUSHBUTTON 30 120 36 24 "OK" OK

PUSHBUTTON RIGHT+24 36 24 "Cancel" Cancel

In the above you must NOT have any spaces in the string "RIGHT+24".

In place of W H you may also use the keyword SAME. This will produce a control

with exactly the same size as the previous defined control.

Additionally, if you require to use only one of the coordinates from the previous

control, you can use OLD or NEW in place of either of the X or Y positions, and

OLD in place of either of the W or H specifications. In the case of the X and Y

positions, OLD refers to the left/top position of the previous control, while NEW

refers to the right/bottom of the previous control. Here again you may also

specify optional positive or negative offsets. This means that DOWN is the same

thing as OLD NEW, while RIGHT is the same thing as NEW OLD. For example,

you could write:

EDITTEXT 10 10 100 12 %1

DEFPUSHBUTTON OLD+10 NEW+5 30 20 "OK" OK

PUSHBUTTON NEW+20 OLD SAME "Cancel" Cancel

"Text" is the text to be displayed in the control (edit controls and list boxes

take their text from the associated variable). This may also be defined in any of

the normal formats used by the script language, for example a valid LTEXT

statement could be:

LTEXT 6 12 90 12 ("Value of " %15)

In all cases where a text is displayed with a control, you can add an ampersand

(&) before the letter you wish to use as a 'hot key' to move directly to that item

from the keyboard. For example, you could define:

CHECKBOX 6 12 120 12 "&Collect output reports" %5

%N defines the associated variable, used to define both the initial state and to

return the final state of the control. More information on this will be given when

the different controls are defined.

 DBOX Command

Gallagher & Robertson Glink: Script Reference 183

'Number' defines the number of the pushbutton (or default pushbutton or

IBUTTON). Buttons may be numbered from 1 to 63, and will always result in the

dialog box being terminated when pressed. The exception is the help button; see

the definition of the PUSHBUTTON statement on page 205 for more information.

By convention the OK button should be numbered 1 and the Cancel button (if

any) should be numbered 2. This will preserve the normal functionality for the

ENTER and ESCAPE keys (you may use the keywords OK and CANCEL for the

button number instead of specifying the actual number). The value of the button

used to terminate the dialog box will be returned in the internal $DBOX variable.

[options] is a list of specific options which apply to the control. The follow-

ing options are supported (not all will apply to every control type):

ALPHABETIC (COMBOBOX, EDITTEXT)

The edit control will only accept alphabetic characters.

[attributes] (most)

Attributes may be set on most types of text field (see specific items for

applicability, and note that buttons are a special case where attributes may not

be used because of Windows limitations). Attributes that may be set include:

[LIGHT] RED | GREEN | BLUE | YELLOW | CYAN |

 MAGENTA | GREY | GRAY | WHITE

BOLD

UNDERLINE

AUTOTAB (COMBOBOX, EDITTEXT)

Must be combined with the MAXLENGTH option and specifies that an

automatic tab to the next field be performed when the maximum length of the

field is reached.

BOTH (TRACKBAR)

The trackbar should display ticks on both sides of the slider.

BOTTOM (TRACKBAR)

The trackbar should display ticks underneath the (horizontal) trackbar. This is

the default for horizontal trackbars.

CENTER (EDITTEXT)

Displays centered text. Applies to multiline edit controls only, but you can get

centering by using a multiline control with no scroll bar and only enough

space for a single line.

DBOX Command

184 Glink: Script Reference Gallagher & Robertson

DIGIT (COMBOBOX, EDITTEXT)

The edit control will only accept digits.

DISABLED (all)

Disables the control so that input may not be entered.

DRDW (COMBOBOX)

Defines a 'dropdown' combo box (one that has a 'hidden' list box which drops

down when you press the icon next to the edit field).

DRLS (COMBOBOX)

Defines a 'dropdown list' combo box (the same as the 'dropdown' style except

that you cannot type into the text field).

FILL (COMBOBOX, EDITTEXT)

The edit control must be filled to the maximum defined length (as defined by

the MAXLENGTH option) if any data is entered.

FOCUS (all)

Sets the input focus to this control initially.

GROUP (all)

Defines the start of a group.

HBAR (COMBOBOX, LISTBOX, EDITTEXT)

Provides a horizontal scrollbar for scrolling of the text. For EDITTEXT, sets

the HSCROLL and MULTILINE options automatically, in that these are the

only types of control for which the scroll bar is useful.

HSCROLL (EDITTEXT)

Allows horizontal scrolling of the text.

INACTIVITY n (all BUTTONs)

If there has been no activity in the dialog box for the specified number of

seconds then this button will be pressed automatically. Use the TIMEOUT

option if you want the button to be pressed with a timeout that starts when the

dialog box is first shown.

LEFT (CHECKBOX, RADIOBUTTON, TRACKBAR)

Displays the text (or the trackbar ticks) to the left of the button.

LIST (COMBOBOX, LISTBOX)

Specifies that an inline list of contents will follow this listbox definition.

 DBOX Command

Gallagher & Robertson Glink: Script Reference 185

LOWERCASE (EDITTEXT)

All text entered is converted to lower case.

MAXLENGTH n (COMBOBOX, EDITTEXT)

The edit control will accept a maximum of n characters.

MINLENGTH n (COMBOBOX, EDITTEXT)

The edit control must contain a minimum of n characters.

MULTILINE (EDITTEXT)

Multiple lines of text may be entered.

NOGROUP (all)

This control is not the start of a group.

NOSIZE (BBUTTON, BITMAP)

Suppresses resizing of bitmaps.

NOTABSTOP (all)

This control is not a tab stop.

NOTICKS (TRACKBAR)

The trackbar should not display any ticks.

NUMERIC (COMBOBOX, EDITTEXT)

The edit control will only accept numerics (0-9, comma, period, +, -).

PASSWORD (EDITTEXT)

Text entered should not be displayed on the screen.

RANGE min max (EDITTEXT)

Specifies a minimum and maximum value for the entry (requires that the entry

also be defined as NUMERIC).

READONLY (EDITTEXT)

You are not allowed to modify the text (but can for example mark it and copy

it to the clipboard).

REQUIRED (COMBOBOX, EDITTEXT)

You must enter at least one non-space character in this field.

DBOX Command

186 Glink: Script Reference Gallagher & Robertson

RETEDIT (COMBOBOX)

Specifies that the contents of the edit box in a dropdown combo box should

be returned (normally the currently selected item in the list itself will be

returned irrespective of the contents of the edit control).

REVERSE (COMBOBOX)

Display the entries in the list box using only the field after the ETX character

in the data for the item (see the description of the COMBOBOX for more

details).

RIGHT (EDITTEXT, TRACKBAR)

The text should be displayed with right justification. Applies to multiline edit

controls only, but you can get right justification by using a multiline control

with no scroll bar and only enough space for a single line. For trackbar

controls, this specifies that a vertical trackbar should display its tick marks on

the right.

SIMPLE (COMBOBOX)

Defines a 'simple' combo box (this has an edit control and a permanently

displayed list box).

SORT (LISTBOX, COMBOBOX)

The items in the box should be sorted before display.

TABPOSITION (p1 p2 ...) (LISTBOX, COMBOBOX)

Specifies tab positions to be used in the list box (in dialog units). Up to eight

positions may be specified. If more tabs are used in the text of the item being

displayed than are specified with the TABPOSITION definition then the

distance between the last two positions specified will be used to generate

additional tab stops. For example:

TABPOSITION (12 32)

This will set tab stops at 12, 32, 52, 72 and so on. In the case of the combo

box, tabs in the text item (defined with ^I) will simply be replaced by spaces

when the item is displayed. Default tab positions are at 20, 40, 60, 80 and so

on.

TABSTOP (all)

This item has a tab stop.

 DBOX Command

Gallagher & Robertson Glink: Script Reference 187

TIMEOUT n (all BUTTONs)

If the dialog box has not been exited after the specified number of seconds

then this button will be pressed automatically. Use the INACTIVITY option

if you want the button to be pressed with a timeout that is restarted whenever

there is activity in the dialog box.

TOP (TRACKBAR)

The (horizontal) trackbar should display its tick marks above the slider rather

than below.

UPDOWN (EDITTEXT)

Add an updown (spinner) control to this edit field. Should normally only be

used on numeric fields.

UPPERCASE (EDITTEXT)

Text should be converted to upper case as entered.

VBAR (EDITTEXT)

Provides a vertical scrollbar for scrolling of the text. Sets the VSCROLL and

MULTILINE options automatically, in that these are the only types of control

for which the scroll bar is useful.

VERTICAL (TRACKBAR)

The trackbar control should be displayed vertically rather than horizontally.

VSCROLL (EDITTEXT)

The (multiline) text should be allowed to scroll vertically.

WRAP n (EDITTEXT)

The text output to a file from a multiline edit control will be word-wrapped at

column n. Note that although text entered continuously into such a control

will be wrapped on the screen, it will not be wrapped on the file unless the

WRAP option has been specified.

Most of these options will only affect aspects of the control they are used with.

However, the GROUP and TABSTOP (also the NOGROUP and NOTABSTOP)

options will affect the behaviour of the dialog box as a whole.

DBOX Command

188 Glink: Script Reference Gallagher & Robertson

Dialog box elements

Automatic group boxes

Syntax:

AUTOGROUP "Text" [options]

Definition:

This defines an 'automatic' group box. This is exactly the same as a group box,

but you need not specify the position or dimensions of the box. It will automati-

cally be adjusted so as to enclose the following items in the group.

The specified text will be displayed in the top border of the enclosing box.

Available options:

[attributes], DISABLED, FOCUS, GROUP, NOGROUP, NOTABSTOP,
TABSTOP

Default options:

GROUP

 DBOX Command

Gallagher & Robertson Glink: Script Reference 189

Bitmap buttons

Syntax:

BBUTTON X Y W H "Text" number [options]

Definition:

This is exactly the same as the normal PUSHBUTTON command, except that

instead of using a text inside the button it uses a bitmap to represent the action

corresponding with pressing the button (in much the same way as the toolbar).

The bitmap used may be a predefined bitmap delivered with the program, a

bitmap extracted from a library (.DLL) file, or a bitmap contained in a bitmap

file (.BMP). The predefined bitmaps delivered with the program are the same as

those you see in the toolbar setup menu. They are numbered from 51 and up in

the same order as they are presented in the list box in that menu. To use one of

these, specify the number of the bitmap with a '#' in front. To load a bitmap

from a BMP file such as those produced by Paintbrush, just specify the file name.

To load a bitmap from a DLL library, specify the name of the library and then the

name of the bitmap resource inside the library.

The bitmap will be resized so as to fit the space provided for it. If you would

prefer this not to happen, then specify the NOSIZE option in the bitmap defi-

nition. In that case the bitmap will be centered and/or clipped rather than resized.

Examples:

BBUTTON 60 20 31 27 "#93" OK

BBUTTON 60 20 50 35 "C:\WORK\BITMAP.BMP" OK

BBUTTON 60 20 50 35 "C:\BITMAPS\MYLIB.DLL BIT_5" 5

Available options:

DISABLED, FOCUS, GROUP, INACTIVITY, NOGROUP, NOSIZE,

NOTABSTOP, TABSTOP, TIMEOUT

Default options:

TABSTOP

DBOX Command

190 Glink: Script Reference Gallagher & Robertson

Bitmaps

Syntax:

BITMAP X Y W H "Text"

Definition:

This allows you to place a bitmap inside a dialog box. The bitmap will not be

active in any way (see the preceding BBUTTON command for a way to use a bit-

map inside a pushbutton). The bitmap used may be a predefined bitmap delivered

with the program, a bitmap extracted from a library (.DLL) file, or a bitmap

contained in a bitmap file (.BMP). The predefined bitmaps delivered with the

program are the same as those you see in the toolbar setup menu. They are num-

bered from 51 and up in the same order as they are presented in the list box in

that menu. To use one of these, specify the number of the bitmap with a '#' in

front. To load a bitmap from a BMP file such as those produced by Paintbrush,

just specify the file name. To load a bitmap from a DLL library, specify the name

of the library and then the name of the bitmap resource inside the library.

The bitmap will be resized so as to fit the space provided for it. If you would

prefer this not to happen, then specify the NOSIZE option in the bitmap defi-

nition. In that case the bitmap will be centered and/or clipped rather than resized.

Examples:

BITMAP 60 20 31 27 "#93"

BITMAP 60 20 50 35 "C:\WORK\BITMAP.BMP"

BITMAP 60 20 50 35 "C:\BITMAPS\MYLIB.DLL BIT_5"

Available options:

NOSIZE

 DBOX Command

Gallagher & Robertson Glink: Script Reference 191

Check boxes

Syntax:

CHECKBOX X Y W H "Text" %N [options]

Definition:

This defines a check box control, which creates a small rectangle which can be

either selected or not. The associated text is displayed next to the check box.

Each check box operates independently of other check boxes and returns a sepa-

rate value (compare with radio buttons) but you may wish to group several of

them inside a group box if they are related.

%N defines the name of the variable you are going to use in order to set the initial

state and read the final state when you exit from the dialog box. A value of "0"

means unchecked and a value of "1" means checked.

Available options:

[attributes], DISABLED, FOCUS, LEFT, GROUP, INACTIVITY,

NOGROUP, NOTABSTOP, TABSTOP, TIMEOUT

Default options:

TABSTOP

DBOX Command

192 Glink: Script Reference Gallagher & Robertson

Combo boxes

Syntax:

COMBOBOX X Y W H %N [options]

Definition:

This defines a combination box, which contains both a text field and a list box.

The current selection from the list box is displayed in the text field. Three vari-

ants of the combo box are available and selectable by options:

Simple (SIMPLE) the list box is always displayed.

Dropdown (DRDW) the list box is hidden, but opened when you click

the icon next to the text field.

Dropdown List (DRLS) the same as Dropdown, but the edit field is re-

placed with a fixed text that cannot be edited (but

which still shows the value of the current selection)

The associated script variable defines both the initial values to load into the list

box, and returns the value actually selected. See the LISTBOX definition on page

201 for more details of how the list box may be loaded. In the case where the

dialog box is terminated because the user double-clicked an item from the list in

a simple combo box, then the number of the associated variable will be returned

in the $DBLCLICK internal variable. In this case the value of $DBOX will be 1 in

that the default meaning assigned to a double click is the same as for clicking on

'OK'.

Note that the height H for a dropdown box should specify the height of the box

when the list is displayed, not the height when the list is closed.

One additional option relates to the loading of the list box, specified with

REVERSE. In this case, you will have specified items for the list box with an

ETX separator. Normally this will result in only the first item (before the ETX)

being displayed in the edit control and the list box. When the REVERSE option

has been specified, the part before the ETX will be displayed in the edit box as

usual, but in the list box the part after the ETX will be displayed. This allows you

to implement combo boxes of the type where only a system 'code' need be

entered in the edit control, but more explanatory items entered into the list box.

For example, the list of states shown in the list box example could have been

supplied in the form "AL^CAlabama" and so on. The list box would then show

the name of the state but the edit control would operate with the postal code.

 DBOX Command

Gallagher & Robertson Glink: Script Reference 193

Available options:

[attributes], ALPHABETIC, AUTOTAB, DIGIT, DISABLED, DRDW,

DRLS, FILL, FOCUS, GROUP, HBAR, LIST, MAXLENGTH, MINLENGTH,

NOGROUP, NOTABSTOP, NUMERIC, REQUIRED, RETEDIT, REVERSE,

SIMPLE, SORT, TABPOSITION, TABSTOP

Default options:

DRDW, TABSTOP

Centered text

Syntax:

CTEXT X Y W H "Text" [options]

Definition:

This defines a centered text control. It creates a simple rectangle that displays the

given text centered inside the specified area. The text will wrap around if it

would extend past the end of the line (and if you have provided enough room for

more than one line).

Available options:

DISABLED, FOCUS, GROUP, NOGROUP, NOTABSTOP, TABSTOP

Default options:

GROUP

DBOX Command

194 Glink: Script Reference Gallagher & Robertson

Default pushbuttons

Syntax:

DEFPUSHBUTTON X Y W H "Text" number [options]

Definition:

This defines exactly the same as the PUSHBUTTON statement, except that the

button is drawn with a thick border, showing you that this is the default response.

In most cases this will also be the action taken if you press the enter key. See the

PUSHBUTTON statement on page 205 for more details.

Available options:

DISABLED, FOCUS, GROUP, INACTIVITY, NOGROUP, NOTABSTOP,

TABSTOP, TIMEOUT

Default options:

TABSTOP

 DBOX Command

Gallagher & Robertson Glink: Script Reference 195

Edit text

Syntax:

EDITTEXT X Y W H %N [options]

Definition:

This defines a rectangular region into which you can type text. The contents of

the script variable specified will be used to set the initial contents of the text

field, and will also contain the modified text when the dialog box terminates. For

editing of larger amounts of text than can be held in a normal script variable, you

may use a file. To do this use the format

"@FILENAME.EXT"

in the initial contents of the script variable. If you do this then the specified file

will be presented in the edit control and the edited results written back to the

same file. If the file does not exist then the edit control will be empty initially and

the file will be created when the dialog is terminated. If you wish the edit control

to initially be empty, but still output to a file, then specify the file name with an

additional "@" character as follows:

"@@FILENAME.EXT"

Edit controls which use files for passing data should normally specify the

MULTILINE option. Note that there is a limit to the amount of text that can be

processed inside an edit control (about 50K). We recommend that you reserve

use of file-based edit controls for files that are smaller than this.

Available options:

[attributes], ALPHABETIC, AUTOTAB, CENTER, DIGIT, DISABLED,

FILL, FOCUS, GROUP, HBAR, HSCROLL, LOWERCASE, MAXLENGTH,

MINLENGTH, MULTILINE, NOGROUP, NOTABSTOP, NUMERIC, PASSWORD,

READONLY, REQUIRED, RIGHT, TABSTOP, UPPERCASE, VBAR, VSCROLL,
WRAP

Default options:

TABSTOP

DBOX Command

196 Glink: Script Reference Gallagher & Robertson

End of group marker

Syntax:

ENDGROUP

Definition:

This is simply a marker for the end of the current group of controls. Windows

will automatically terminate a group whenever a new control with the GROUP

option is defined. However, you may find it more convenient to use a specific

command for the end of the group, in terms of both readability and functionality.

Available options:

None.

End of horizontal group

Syntax:

ENDHGROUP

Definition:

This marks the end of a horizontally spaced group of controls.

Available options:

None.

 DBOX Command

Gallagher & Robertson Glink: Script Reference 197

End of vertical group

Syntax:

ENDVGROUP

Definition:

This marks the end of a vertically spaced group of controls.

Available options:

None.

Group boxes

Syntax:

GROUPBOX X Y W H "Text" [options]

Definition:

This defines a box that groups together several other items. The specified text

will be displayed in the top left corner of the box.

The commands to be grouped must follow immediately after the GROUPBOX

definition. Note that there is no built-in mechanism or ensuring that the group

box actually physically encloses the group. The definition of the group is that all

controls following the group box that do not have the GROUP option set will be

included in the group. You may find that the AUTOGROUP command is easier to

use in that this does the necessary calculations for you automatically.

Available options:

[attributes], DISABLED, FOCUS, GROUP, NOGROUP, NOTABSTOP,
TABSTOP

Default options:

GROUP

DBOX Command

198 Glink: Script Reference Gallagher & Robertson

Horizontal group

Syntax:

HGROUP X Y W H

Definition:

This defines the start of a group of controls that will be spaced horizontally for

you, without the need for calculation of the position of each control. The

HGROUP command specifies the total area that will be available for all items in

the group. For each item in the group, only the item width should be specified.

The vertical position and the height of each item will be taken from the HGROUP

definition, and the horizontal position will be calculated for you so as to provide

equal space between each item in the group. HGROUP groups should be termi-

nated with an ENDHGROUP command.

Example:

HGROUP 30 70 120 24

 PUSHBUTTON 36 "OK" OK

 PUSHBUTTON SAME "Cancel" Cancel

 PUSHBUTTON SAME "Help" Help

ENDHGROUP

Available options:

None.

 DBOX Command

Gallagher & Robertson Glink: Script Reference 199

Icon buttons

Syntax:

IBUTTON X Y W H "Text" number [options]

Definition:

This is exactly the same as the normal PUSHBUTTON command, except that

instead of using a text inside the button it uses an icon to represent the action

corresponding with pressing the button (in much the same way as the toolbar).

The icon used may be a predefined icon delivered with the program, an icon

extracted from a program file (.EXE or .DLL), or an icon contained in an icon

file (.ICO). The predefined icons delivered with the program are the following

(see the ICON command for pictures of the icons themselves):

 #CANCEL, #EXCLAMATION, #HELP, #INFORMATION, #NO,

 #QUESTION, #STOP, #YES

To use an icon from an executable or icon file, simply specify the file name and

(in the case of a file containing multiple icons) the number of the icon inside the

file. If no number is specified then the first icon (icon zero) will be used.

Examples:

IBUTTON 60 20 30 24 "#YES" OK

IBUTTON 60 20 30 24 "\WINDOWS\MORICONS.DLL 4" 5

Available options:

DISABLED, FOCUS, GROUP, INACTIVITY, NOGROUP, NOTABSTOP,

TABSTOP, TIMEOUT

Default options:

TABSTOP

DBOX Command

200 Glink: Script Reference Gallagher & Robertson

Icons

Syntax:

ICON X Y W H "Text"

Definition:

This allows you to place an icon inside a dialog box. The icon will not be active

in any way (see the preceding IBUTTON command for a way to use an icon

inside a pushbutton). The icon used may be a predefined icon delivered with the

program, an icon extracted from a program file (.EXE or .DLL), or an icon con-

tained in an icon file (.ICO). The predefined icons delivered with the program

are the following:

#CANCEL #EXCLAMATION

#HELP #INFORMATION

#NO #QUESTION

#STOP #YES

To use an icon from an executable or icon file, simply specify the file name and

(in the case of a file containing multiple icons) the number of the icon inside the

file. If no number is specified then the first icon (icon zero) will be used.

Examples:

ICON 60 120 24 24 "#YES"

ICON 60 120 24 24 "C:\WINDOWS\MORICONS.DLL 4"

Available options:

None

 DBOX Command

Gallagher & Robertson Glink: Script Reference 201

List boxes

Syntax:

LISTBOX X Y W H %N [options]

Definition:

This defines a rectangle containing a list of items from which you can make

selections (for dropdown list boxes, see the COMBOBOX command on page 192).

The initial contents of the list box are specified by the contents of the %N script

variable when the dialog is started, and can be one of the following:

Comma-separated list

This is a simple list of the strings to be included, separated by commas. For

example:

"Apples,Bananas,Oranges,Pears"

would give exactly these four items in the list box. You can specify which of

these is to be the initial selection by prefixing it with an exclamation point, for

example:

"Apples,Bananas,!Oranges,Pears"

Note the 80-character limit for contents of script variables, which limits the use-

fulness of this way of specifying the contents of the list box other than for quite

short lists.

You may specify the contents of an item as two elements separated by an ETX

character (which you enter as ^C). In this case, only the contents of the field

before the ETX character will actually be displayed in the list box. On the other

hand, the returned value to your script will consist of the complete contents of the

field, both before and after the ETX character. You can use this feature to include

codes that you need for the script but wish to hide from the user.

DBOX Command

202 Glink: Script Reference Gallagher & Robertson

Inline list

For longer lists, you can include a list directly in the script. Do this by specifying

the LIST option in the definition of the list (or combo) box. Starting in the next

line of your script include the desired items in the list box. You can include

several items per line with comma separators or one item per line as you please.

Leading spaces will be stripped (this allows you to indent the list to make your

script more readable). The only requirement is that you should terminate the list

with an

 ENDLIST

command. The same convention as described above (initial exclamation point

defines the initially selected item) applies here. For example:

LISTBOX 12 12 120 150 %1 LIST

 Alabama, Alaska, Arizona, Arkansas, California,

 Colorado, Connecticut, Delaware, Florida,

 Georgia, Hawaii, Idaho, Illinois, Indiana,

 Iowa, Kansas, Kentucky, Louisiana, Maine,

 Maryland, Massachusetts, Michigan, Minnesota,

 Mississippi, Missouri, Montana, Nebraska,

 Nevada, New Hampshire, New Jersey, New Mexico,

 New York, North Carolina, North Dakota, Ohio,

 Oklahoma, Oregon, Pennsylvania, Rhode Island,

 South Carolina, South Dakota, Tennessee, Texas,

 Utah, Vermont, Virginia, Washington,

 West Virginia, Wisconsin, Wyoming

ENDLIST

ETX characters may be inserted in the same way as for the comma-based list

described above; these should be inserted using the ^C character in the same

way.

If you use an inline list to fill the list box then the initial value of the associated

script variable will be ignored.

File-based list

You can provide longer lists by putting them on a text file, one line per item. You

place the name of the file into the script variable prefixed with the commercial at

(@) character. For example you could use "@LISTBOX.LST". One of the lines

in the text file may be prefixed with the "!" character in the same way as for

comma-based lists. Entries in the file may also include ETX characters as for the

other forms.

 DBOX Command

Gallagher & Robertson Glink: Script Reference 203

Directory list

For those cases where you wish to select a filename, you can ask for the list box

to be filled with filenames chosen from a specified directory (using wildcards if

you wish). Do this by specifying "@F filespec" where filespec is the pattern

to match. For example "@F E:\GLINK*.*" would give a list of all files in

the E:\GLINK directory.

If you wish the listing to include directories and drives as well as files, use

"@D filespec" instead. If you wish it to contain only drives and directories

use "@C filespec".

In all of the above cases, the specified variable will be returned with the value of

the item selected at the time the dialog box was terminated. In the case where the

dialog box is terminated because the user double-clicked an item from a list box,

then the number of the associated variable will be returned in the $DBLCLICK

internal variable. In this case the value of $DBOX will be 1 in that the default

meaning assigned to a double click is the same as for clicking on 'OK'.

Available options:

DISABLED, FOCUS, GROUP, HBAR, LIST, NOGROUP, NOTABSTOP, SORT,

TABPOSITION, TABSTOP

Default options:

TABSTOP

DBOX Command

204 Glink: Script Reference Gallagher & Robertson

Left justified text

Syntax:

LTEXT X Y W H "Text" [options]

Definition:

This defines a flush-left text control. It creates a simple rectangle that displays

the given text left justified inside the specified area. The text will wrap around if

it would extend past the end of the line (and if you have provided enough room

for more than one line).

Available options:

[attributes], DISABLED, FOCUS, GROUP, NOGROUP, NOTABSTOP,
TABSTOP

Default options:

GROUP

 DBOX Command

Gallagher & Robertson Glink: Script Reference 205

Pushbuttons

Syntax:

PUSHBUTTON X Y W H "Text" number [options]

Definition:

This defines a button that you can press. With one exception, pressing such a

button will terminate the dialog box and you can then check the values returned

from the various fields in the dialog box. The button will be labelled with the text

you specify in the definition.

There are three predefined values (which you specify in the 'number' field) for

buttons:

OK (actual value 1)

This is the normal way to exit from a dialog box.

CANCEL (value 2)

This is the normal way to cancel a dialog box. In this case, all values set in

script variables before the dialog box was started will be returned to their

initial values.

HELP (no equivalent value)

This will call the help file for the dialog (which must be specified in the

ENDDBOX command at the end of the dialog box definition). Pressing F1 will

also call the help file, but providing a help button makes it more obvious that

there is help available. This is the exception to the rule that pressing a button

will terminate the dialog.

Available options:

DISABLED, FOCUS, GROUP, INACTIVITY, NOGROUP, NOTABSTOP,

TABSTOP, TIMEOUT

Default options:

TABSTOP

DBOX Command

206 Glink: Script Reference Gallagher & Robertson

Radio buttons

Syntax:

RADIOBUTTON X Y W H "Text" %N number [options]

Definition:

This defines a button, usually part of a group of buttons, where selecting one

button automatically deselects all the others in the same group. These are used in

situations where only one of a number of options may be selected. The text speci-

fied in the command will be shown next to the button.

Normally you will define a group of radio buttons with the same script variable

for each button, but with different values for 'number'. Before the DBOX com-

mand is executed, you should assign the number of the button you wish to have

as the initial selection to this script variable. When the dialog box is terminated

the variable will contain the number of the radio button that actually was chosen.

For example:

ASSIGN %7 "3"

...

DBOX 20 20 150 200 "Example"

...

 AUTOGROUP "Buttons"

 RADIOBUTTON 12 30 120 12 "First choice" %7 1

 RADIOBUTTON DOWN SAME "Second choice" %7 2

 RADIOBUTTON DOWN SAME "Third choice" %7 3

 RADIOBUTTON DOWN SAME "Fourth choice" %7 4

 RADIOBUTTON DOWN SAME "Fifth choice" %7 5

 ENDGROUP

...

ENDDBOX

In this example, the third button will be selected initially. If you selected the

fourth choice instead while the dialog box was on the screen then %7 will now

contain "4".

 DBOX Command

Gallagher & Robertson Glink: Script Reference 207

Other ways of using variables and radio buttons are possible, so a brief technical

discussion of what is actually happening here is in order. When the dialog box is

started, each radio button is inspected. If the number specified for the radio

button matches the contents of the script variable then the button will be selected;

otherwise it will be left unchecked. When the OK button is pressed each radio

button is inspected again. First all associated variables are zeroed, and after that

every button that is selected will move the associated number into the defined

variable. This means that you don't necessarily have to use the same variable for

each radio button in the group if that makes life easier in the rest of your script.

Normally however you'll find that doing things as shown in the example is the

simplest way of handling radio buttons.

Available options:

[attributes], DISABLED, FOCUS, INACTIVITY, LEFT, GROUP,

NOGROUP, NOTABSTOP, TABSTOP, TIMEOUT

Default options:

TABSTOP

Right justified text

Syntax:

RTEXT X Y W H "Text" [options]

Definition:

This defines a flush-right text control. It creates a simple rectangle that displays

the given text right justified inside the specified area. The text will wrap around if

it would extend past the end of the line (and if you have provided enough room

for more than one line).

Available options:

[attributes], DISABLED, FOCUS, GROUP, NOGROUP, NOTABSTOP,
TABSTOP

Default options:

GROUP

DBOX Command

208 Glink: Script Reference Gallagher & Robertson

Size buttons

Syntax:

SIZEBUTTON X Y W H "Text" dw dh [options]

Definition:

This defines a button that you can press to change the size of the dialog box inter-

actively. The dw and dh values define the new width and height of the dialog box

in dialog units. The button will be labelled with the text you specify in the defi-

nition.

When you use this type of button, you will also be defining some of the elements

of the dialog box outside the area specified in the DBOX command. Note that this

also implies that you are not able to use the AUTO option for the dialog box size.

These elements will not be accessible until the size button is pressed, which will

open a larger area of the box and reveal the additional items. In the same way,

you are also at liberty to define a button that 'shrinks' the dialog box back to a

smaller size.

Example:

DBOX 10 10 100 48 "Size example"

 EDITTEXT 10 10 20 14 %1

 SIZEBUTTON 20 30 50 14 "Advanced" 100 88

 EDITTEXT 10 50 20 14 %2

 SIZEBUTTON 20 70 50 14 "Simple" 100 48

ENDDBOX

Available options:

DISABLED, FOCUS, GROUP, NOGROUP, NOTABSTOP, TABSTOP

Default options:

TABSTOP

 DBOX Command

Gallagher & Robertson Glink: Script Reference 209

Trackbars

Syntax:

TRACKBAR X Y W H %N min max [options]

Definition:

This defines a 'trackbar', which is displayed as a slider control and has a mini-

mum and maximum value to which it can be set. The initial value is taken from

the %N variable and the value to which the trackbar is set is returned in the same

place. By default, a trackbar will be displayed as a horizontal slider with tick

marks underneath the slider. You may use the available options to suppress the

tick marks, to make the slider vertical, or to display the tick marks either on the

other side or on both sides.

Available options:

BOTH, BOTTOM, DISABLED, FOCUS, GROUP, LEFT, NOGROUP, NOTABSTOP,

NOTICKS, RIGHT, TABSTOP, TOP, VERTICAL

Default options:

TABSTOP

DBOX Command

210 Glink: Script Reference Gallagher & Robertson

Vertical group

Syntax:

VGROUP X Y W H

Definition:

This defines the start of a group of controls that will be spaced vertically for you,

without the need for calculation of the position of each control. The VGROUP

command specifies the total area that will be available for all items in the group.

For each item in the group, only the item height should be specified. The hori-

zontal position and the width of each item will be taken from the VGROUP

definition, and the vertical position will be calculated for you so as to provide

equal space between each item in the group. VGROUP groups should be termi-

nated with an ENDVGROUP command.

Example:

AUTOGROUP "Example group"

 VGROUP 10 12 100 70

 RADIOBUTTON 12 "Choice 1" %7 1

 RADIOBUTTON SAME "Choice 2" %7 2

 RADIOBUTTON SAME "Choice 3" %7 3

 RADIOBUTTON SAME "Choice 4" %7 4

 RADIOBUTTON SAME "Choice 5" %7 5

 RADIOBUTTON SAME "Choice 6" %7 6

 ENDVGROUP

ENDGROUP

Available options:

None.

 External interface

Gallagher & Robertson Glink: Script Reference 211

External interface

Overview of extension DLL interface

Glink allows your scripts to call functions in external DLL libraries, including all

the standard Windows routines. To do this, you must write one or more additi-

onal DLL libraries to provide an interface between the script language and the

actual functions you wish to call. These additional DLL libraries provide both a

definition of the syntax of the extensions to the script language they implement

and conversion between the data formats used by the script language and those

used by the external routines.

Up to ten of these DLL libraries may be used simultaneously. Five of these are

named conventionally from GLSCREX0.DLL to GLSCREX4.DLL (and are

loaded automatically if present), while the other five may be referred to specifi-

cally by name in the script itself.

Using external functions in a script

From the script programmer's point of view, the extensions to the script language

that are provided by the add-on DLL seem to be part of the script language itself.

The only difference between verbs that are part of the native script language and

those that are in the DLL is that the external verbs are marked with angle

brackets (<>). For example, a script might wish to test whether or not another

application is active (to check whether or not it needs to be started). A Windows

developer would use the function FindWindow() directly, writing for example

(in C):

if (!FindWindow("XLMAIN",NULL)) {

 WinExec ("EXCEL", SW_SHOWNORMAL);

}

External interface

212 Glink: Script Reference Gallagher & Robertson

Note that XLMAIN is the class name for the Excel main window in the above

example. In that the script language does not provide a direct equivalent to the

FindWindow() function we would define an equivalent function in an external

DLL, calling it perhaps MyFindWindow. This function would be defined with

three arguments, the first two being the same two arguments as are needed for the

call itself, and the third used for saving the return value from the call so that the

script can test the result. Later we'll look at how this is actually implemented, but

for now we'll look at what would be written in the script itself:

<MyFindWindow> "XLMAIN" "" %1

if (%1 eqn 0) DOS "EXCEL"

These statements provide exactly the same functionality as the C code above, and

assume that the MyFindWindow routine is in one of the standard (GLSCREXn)

libraries. If the MyFindWindow routine had been in a specifically named

library, for example WINAPI.DLL, then you could call it using the following

syntax:

<WINAPI.MyFindWindow> "XLMAIN" "" %1

if (%1 eqn 0) DOS "EXCEL"

Note that you specify the name of the extension DLL as a simple file name with

no extension when referencing a specific library in this way.

Programming external script functions

Leaving aside for the moment the question of how the syntax of the

MyFindWindow verb is defined by the DLL, we can look at the actual imple-

mentation. In C this would look like this:

void WINAPI

 MyFindWindow (lpClass, lpWindow, lphWnd)

 LPSTR lpClass;

 LPSTR lpWindow;

 HWND FAR *lpHwnd;

{

 if (!*lpClass)

 lpClass = NULL;

 if (!*lpWindow)

 lpWindow = NULL;

 *lphWnd = FindWindow(lpClass, lpWindow);

}

 External interface

Gallagher & Robertson Glink: Script Reference 213

The same routine in Pascal would be written:

procedure MyFindWindow (lpClass, lpWindow : PChar;

 var Result : Hwnd); export;

{$IFDEF WIN32} stdcall; {$ENDIF}

 begin

 if lpClass^ = #0 then lpClass := nil;

 if lpWindow^ = #0 then lpWindow := nil;

 Result := FindWindow (lpClass, lpWindow);

 end {MyFindWindow};

Several points are worth noting at this stage. Firstly, none of the external routines

may return a value (in Pascal terms, they are all procedures rather than func-

tions). Any results that must be returned are returned in one or more of the

arguments to the routine itself. The routine must also be defined as WINAPI, as

is normal for routines in DLL libraries. Also, all arguments are passed by

reference rather than by value - they will never be passed as integers for example,

but instead passed as a pointer to an integer (or as a 'var' parameter if you are

programming in Pascal).

Another small point to notice is that the Windows routine we are calling uses a

null argument to specify that one of the parameters should not be used. In that the

interface doesn't allow us to do this directly we've used a convention that inter-

prets a null string as a signal to ignore the parameter, and the DLL routine makes

the appropriate adjustment before calling the Windows routine.

The actual format and number of the parameters being passed to our new

<MyFindWindow> script verb must of course be made known to the script

compiler. Not only that, but it must be told that <MyFindWindow> is a valid

verb. To do this, every external script extension library must have an extra

routine called GlinkVerb. Every time an external verb is encountered in a

script, the compiler will check with the GlinkVerb entry point in each external

DLL that's found to see first of all whether the verb is recognized. If it is, then it

will also check which parameters to expect.

Finally, you must remember to export the MyFindWindow, GlinkVerb and

GlinkValue, if used, in the DEF file for a C module or in the exports

statement for a Pascal module. Make sure they are case sensitive for WIN32

DLL’s.

External interface

214 Glink: Script Reference Gallagher & Robertson

The syntax for the entry point looks like this in C:

int WINAPI

 GlinkVerb(VerbToParse, InputParams, OutputParams)

 LPSTR VerbToParse; /* verb from script, from Glink */

 LPSTR InputParams; /* input parameter specification */

 LPSTR OutputParams; /* output parameter specifications */

And like this in Pascal:

function GlinkVerb (VerbToParse,

 InputParams,

 OutputParams : PChar)

 : integer; export;

{$IFDEF WIN32} stdcall; {$ENDIF}

If you are writing in C, then you must of course remember to export the routine in

the DEF file for the DLL. In the same way, if you are writing in Pascal then you

must remember to include the routine in the exports clause at the end of your

source code. All the strings involved in the above are C-type null-terminated

strings.

When the GlinkVerb routine is called the VerbToParse parameter will be

filled out with the name of the verb in the script being compiled, less the <>

angle-bracket delimiters. The name will also have been converted to uppercase.

So in the example we have been using, the GlinkVerb routine will see

MYFINDWINDOW as its input argument.

If the GlinkVerb routine does not recognize the verb being parsed, it should

return a value of -1. If on the other hand it does recognize the verb, it should

return the ordinal entry point of the routine that implements the verb in the DLL.

The name will not be used to link to the routine at runtime, only the ordinal entry

point number. At the same time, it must fill out the InputParams and

OutputParams arguments, to define which parameters are to be used with the

routine. These are specified with a single character for each parameter and are

chosen from the following:

C Null terminated string

H Handle

I Integer

L Long integer

O Script OK status (output only)

S Structure

 External interface

Gallagher & Robertson Glink: Script Reference 215

As we have already seen, the routine that implements the function in question

will receive far pointers to each of the variable types specified rather than the

actual values. So a 'C' type character parameter will be seen as a LPSTR / PChar

type variable. Let's take a look at what this means in terms of the

MyFindWindow example, which uses two character strings as input parameters

and a window handle as its output parameter. These examples assume that the

MyFindWindow routine has an entry point ordinal number of 101.

int WINAPI

 GlinkVerb(VerbToParse, InputParams, OutputParams)

 LPSTR VerbToParse;

 LPSTR InputParams;

 LPSTR OutputParams;

{

 if (!lstrcmp(VerbToParse, "MYFINDWINDOW")) {

 lstrcpy(InputParams, "CC");

 lstrcpy(OutputParams, "H");

 return(101);

 }

 return (-1);

}

In Pascal:

function GlinkVerb (VerbToParse,

 InputParams,

 OutputParams : PChar)

 : integer; export;

{$IFDEF WIN32} stdcall; {$ENDIF}

 begin

 if strcomp(VerbToParse,'MYFINDWINDOW') = 0 then

 begin

 strcopy (InputParams, 'CC');

 strcopy (OutputParams, 'H');

 GlinkVerb := 101;

 end

 else

 GlinkVerb := -1;

 end {GlinkVerb};

External interface

216 Glink: Script Reference Gallagher & Robertson

It's probably a good idea at this point to follow exactly what happens when the

<MyFindWindow> verb is now used in a script. At compile time the script

compiler discovers that an external verb has been used and attempts to call the

GlinkVerb() routine in any of the GLSCREXn.DLL libraries it finds (or in

the specific named library if that syntax has been used). When it executes the

GlinkVerb() routine we described above it will see that three arguments are

required from what's returned by GlinkVerb, and also will see that the routine

is entry point 101 in the DLL. It will check that three arguments have been pro-

vided, and remember these (the first two, being input arguments, may be coded in

the script as constants; the last one being an output argument must be provided as

a variable identifier).

At runtime the script executive will link to entry point 101 in the appropriate

DLL and provide far pointers to the two strings specified. It will also provide a

far pointer to a handle so that the DLL routine has somewhere to place the result

of the call. After the routine has been called the script executive will take the

value of the handle returned and convert it into a format suitable for further pro-

cessing in the script.

Data types for the DLL

Here we will provide some specific information about the handling of the various

data types used in external script libraries.

In general, all parameters provided for input arguments point to temporary

holding areas - the data in these areas should not be modified (and such modifi-

cation will not affect the actual variables used to supply the input in the script

procedure).

Parameters provided for output arguments are also far pointers to temporary

holding areas (rather than the actual output variables themselves). The script

executive moves the data into the relevant output variables after the verb has

been executed, supplying any necessary conversion at the same time. The

following data types are available:

 External interface

Gallagher & Robertson Glink: Script Reference 217

C: character data

Character data is passed to the external library as a far pointer to a null-

terminated character array. Returned character data is copied back to the output

variable, to a maximum of 255 characters (strings longer than this will be

truncated).

H: handle data

For input parameters, the supplied input value will first be converted to a binary

value (causing a runtime error if this is not possible). The external library will be

passed a far pointer to this value. On output, the external verb will also be

supplied with a far pointer to a binary value, and the script executive will convert

this value back into string format before copying it to the output variable

declared in the script procedure.

I: integer data

For input parameters, the supplied input value will first be converted to a 16-bit

integer when running the 16-bit version of Glink otherwise to 32-bits (causing a

runtime error if this is not possible). The external library will be passed a far

pointer to this value. On output, the external verb will also be supplied with a far

pointer to an integer, and the script executive will convert this integer back into

string format before copying it to the output variable declared in the script

procedure.

L: long integer data

For input parameters, the supplied input value will first be converted to a 32-bit

binary value (causing a runtime error if this is not possible). The external library

will be passed a far pointer to this value. On output, the external verb will also be

supplied with a far pointer to a 32-bit binary value, and the script executive will

convert this value back into string format before copying it to the output variable

declared in the script procedure.

External interface

218 Glink: Script Reference Gallagher & Robertson

O: script OK status

This data type may be specified as an output parameter only. The value placed in

this 16-bit variable by the external DLL should be zero or non-zero (false and

true respectively), and will be reflected in the value of the script OK variable

after the verb in question has executed. Note that when an 'O' parameter has been

specified then although the external script procedure will be provided with a

pointer to the return area, the call in the script itself will NOT contain a para-

meter at the equivalent position.

S: structure data

The input data in this case will normally be in a script variable, and the entire

contents of that variable will be treated as data with unspecified contents. The

external routine may access any of this data up to a limit of 255 bytes. When a

structure variable is supplied as an output argument the external routine may

place data anywhere inside the 255-byte holding area, and the entire 255-byte

area will be copied to the target script variable, irrespective of contents (contrast

with character variables, where the contents will only be copied up to and

including the terminating null character). It is the responsibility of the external

DLL not to move data outside the 255 bytes that are available for an output

structure.

External values

Especially when you deal with the standard Windows routines, there are many

symbolic constants that you might wish to code as names rather than directly as

numbers. For example, a script using the SW_MINIMIZE constant is more

understandable if you could code using that name rather than use '6' as a constant.

Although it's possible to use the external verb functionality to collect such names

this is still fairly complicated, and incurs an unnecessary overhead in that the

value must be dynamically collected at run time). The external DLL facility

caters for this need with an additional entry point, GlinkValue. This has the

following syntax:

int WINAPI

 GlinkValue(ValueToParse, Result)

 LPSTR ValueToParse; /* symbolic value, from Glink */

 LPSTR Result; /* actual value */

 External interface

Gallagher & Robertson Glink: Script Reference 219

In Pascal:

function GlinkValue (ValueToParse, Result : PChar)

 : integer; export;

{$IFDEF WIN32} stdcall; {$ENDIF}

Here again, remember that the routine must be specifically exported in the DEF

file or in the exports statement.

This entry point is supplied with the name collected from the script in the same

way as the GlinkVerb entry point. However, all it has to do is to fill out the

Result field with the relevant constant and return a non-zero value as the result

of the function. If the supplied name is not recognized then GlinkValue

should return a value of zero as its result.

The result supplied by GlinkValue should always be in null-terminated string

format - numeric values should therefore be converted, using wsprintf() for

example.

External values defined this way can be used anywhere in a script where a con-

stant value would be accepted. If the syntax of the script requires a numeric value

then the returned string will be checked at compile time for numeric content.

The GlinkValue() routine that would be needed to implement

SW_MINIMIZE as an external constant (and thus let you use <sw_minimize>

in a script) could look like this:

int WINAPI

 GlinkValue(ValueToParse, Result)

 LPSTR ValueToParse;

 LPSTR Result;

{

 if (!lstrcmp(ValueToParse, "SW_MIMIMIZE")) {

 wsprintf(Result, "%d", SW_MIMIMIZE);

 return(TRUE);

 }

 return(FALSE);

}

The same in Pascal:

function GlinkValue (ValueToParse, Result : PChar)

 : integer; export;

{$IFDEF WIN32} stdcall; {$ENDIF}

 var

 S : string[12];

 begin

 if strcomp (ValueToParse, 'SW_MINIMIZE') = 0 then

External interface

220 Glink: Script Reference Gallagher & Robertson

 begin

 str (sw_Minimize, S);

 StrPCopy (Result, S);

 GlinkValue := 1;

 exit;

 end;

 GlinkValue := 0;

 end {GlinkValue};

Search rules

Extension script libraries should be located in the Glink user directory (specified

with /U on the command line) or in the Glink directory (the same directory as

GL.EXE). Only libraries containing both a GlinkVerb() and a

GlinkValue() exported routine will be considered to be valid libraries.

Note that these exported routine names are case sensitive for WIN32 DLL’s.

Glink will attempt to parse verbs and constants that don't supply a specific DLL

name starting at the GLSCREX0 library and continuing through to GLSCREX4.

The first library to accept the verb or constant will be used; in other words a

routine that exists in more than one library will be executed from the library with

the lowest number.

Examples of extension DLLs

An extensive example of an external library supplying access to a number of

Windows SDK routines is supplied in source with the Glink software (both as C

and as Pascal). This can be used as a base upon which to build your own external

libraries. They can be found in the C:\GLWIN\EXT directory and are called

GLSCREX0.C and GLSCREX0.PAS.

 Examples

Gallagher & Robertson Glink: Script Reference 221

Script examples

To make the use of some of the commands clearer, here are some examples of

scripts that you could use for various purposes.

Simple login to bulletin board

There are several different varieties of these, but the script will in most cases

look more or less the same, as all that is required is a simple dialog:

 converse "FIRST name? " "john smith"

 converse "(dots will echo): " $PASSWORD

 quit

All we are doing here is to respond to the question about our name, wait for the

question about our password (which finishes with the text "(dots will echo): " and

then send our password. You will have to insert the appropriate strings for the

prompts sent by your system, of course. Note that we are assuming here that this

is a script that has been 'attached' to an entry in the dial directory, and is thus

going to be started automatically as soon as we connect. The $PASSWORD here

just means to send the password that we saved in our dial directory entry for this

system. This also means that we can use this same script for all the systems that

have prompts in exactly this form. We could also have used the same principle

for the login name, using the $LOGIN variable.

Examples

222 Glink: Script Reference Gallagher & Robertson

More complex login

Let's take that script and make it a little more 'advanced'. We'll assume that the

system we are talking to stops now and again and sends the --more-- prompt

when it reckons our screen is full. (It isn't, of course; you can always look at what

went past by going into the scrollback with the CTRL+PGUP key.) So we want to

send a CR character every time we see that text. Also we know that the first

command we want to send when we have been through the login procedure is

"R". Let's see what that gives us:

 pattern !1 "--more--"

 when !1 sndline ""

 converse "FIRST name? " "john smith"

 converse "(dots will echo): " $PASSWORD

 converse "Main Command" "r"

 quit

Not much more complicated, but it's giving us a little more than the previous one,

getting us completely into the system.

 Examples

Gallagher & Robertson Glink: Script Reference 223

Login with error checking

Really the only thing missing with that script now is some kind of error checking,

so as to make sure that the script stops properly if things go wrong en route. We'll

finish up with something like:

 pattern !1 "--more--"

 when !1 sndline ""

 on timeout 15 goto Failed

 converse "FIRST name? " "john smith"

 converse "(dots will echo): " $PASSWORD

 on timeout 60 goto OKanyway

 converse "Main Command" "r"

:Okanyway

 quit

:Failed

 message "Script failed!"

 beep

 quit

You can see here the normal way of adding an error check, with the ON com-

mand. If for some reason we don't get the requisite prompt during the initial login

phase, we'll just give up. If we login correctly but don't find the main command

prompt, we'll just carry on anyway, though, in that we are already logged in.

Examples

224 Glink: Script Reference Gallagher & Robertson

'Event-driven' login

A somewhat more 'sophisticated' way of preparing your login script is by letting

events decide what to send. This technique is especially useful when talking to

systems that don't always ask the same questions in the same order, or are

otherwise 'difficult' to talk to for one reason or another. Let's look at a login script

for getting to BIX via the Norwegian Datapak service:

 pattern !1 "NUI?"

 when !1 sndline "N00789PASSWD"

 pattern !2 "ADD?"

 when !2 sndline "A031069"

 pattern !3 "please log in:"

 when !3 sndline "bix"

 pattern !4 ".More.."

 when !4 sndline ""

 pattern !5 "Name?"

 when !5 sndline "jsmith"

 pattern !6 "Password:"

 when !6 sndline $PASSWORD

 pace 2

 strip yes

 delay 2

 sndline ""

 on timeout 90 goto Failed

 receive "^J:"

 quit

 :Failed

 disconnect

 message "Sorry, no luck!"

 quit

This one is slightly more complex, but is worth having a look at. What it's doing

essentially is to set up a number of things that it knows it will see on the way into

the system, and predefining how it will react to each one. All this before doing

anything else at all. Once these have been set up we can start work. Here we set

up a number of parameters that are particular to the service we are logging into,

and then just send a CR (sndline "") to kick things off. Each time the

appropriate message arrives we send the appropriate answer, and all the main

body of the script has to do is to wait for that final prompt that signals success.

 Examples

Gallagher & Robertson Glink: Script Reference 225

Menu-controlled script

This particular example is taken from the Bull environment, and provides menu-

controlled choices of logins to different applications and functions. Hopefully it

can give you some ideas of how you can use Glink to provide a friendly popup-

style interface to some of your most-used applications. The script is designed to

run on a Glink terminal connected to Server6, where the script would be

activated using the following Server6 menu command:

 >xx a PCS this.scr;V78 DSS

where 'this.scr' is the name of the PC file containing the following script:

rece "VIP7804"

rece "[W"

assi %1 ""

:MENU

 time 30

 menu "<< GCOS8 menu >>"

 mop " Start GREDS " goto GREDS

 mop " Start PCF " goto PCF

 mop " Collect a file " goto GETONE

 mop " Send a file " goto SENDONE

 mop " Manual login " goto WAIT

 mtext " (Recall menu with Alt+O) "

 mop " <esc> back to Server6 " goto ALLDONE

 domenu

:ALLDONE

 if (%1 eq "") goto STOPV78

 sndl "$*$DIS"

 rece "[W"

 dten 5

:STOPV78

 sndl "^[^^"

 rece "[W"

 dten 5

 sndl "^[T"

 quit

:GREDS

 gosub LOGIN

 sndl "GREDS"

 goto WAIT

:PCF

 gosub LOGIN

 sndl "PCF"

 goto WAIT

Examples

226 Glink: Script Reference Gallagher & Robertson

:GETONE

 input %9 "File to collect: "

 gosub LOGIN

 sndl "FTRA PC7800"

 getfile FTRA %9

 goto WAIT

:SENDONE

 input %9 "File to send: "

:SEND0

 EXISTS FILE %9

 if OK goto SEND1

 beep

 input %9 "File not found, try again: "

 goto SEND0

:SEND1

 gosub LOGIN

 sndl "FTRA PC7800"

 putfile FTRA %9

 goto WAIT

:LOGIN

 if (%1 eq "DPS8") return

 sndl "$*$CN TSS,DPS8"

 rece "USER ID --"

 menu "TSS password"

 invi %9 "Current password please: " 12

* hide the password

 show "^[sh"

 sndl ("GAR$" %9)

 rece "*"

 return

:WAIT

 assi %1 "DPS8"

 online

 goto MENU

The script above when activated waits for G&R/V78 to be started as the second

command in the menu line, and then it presents a menu for various login and

functional dialogs. After completing each menu function, the script waits for the

script to be reactivated by the user with the ALT+O key. At that point, it returns to

the menu.

 Configuration file format

Gallagher & Robertson Glink: Script Reference 227

Running VBScript or JScript

files

If the Microsoft Script Control is installed on your PC then Glink automatically

runs VBScript or JScript files if the file name is of the form *.VBS* or *.JS*.

The VBScript or JScript file can be started in the same ways you can start a Glink

script, e.g. assigned to macros using ^*myscript.js and then used on the buttonbar

or user menu.

SETMACRO 22 "^*MyScript.JS"

BUTTON 2 MACRO-22 "Special"

Glink will call a function called "Main", which must be present in the script

file, and then wait for the ScriptControl engine to terminate execution before

continuing.

//***************

// JScript Demo *

//***************

function Main()

{

// do something here

}

'*****************

' VB Script Demo *

'*****************

Sub Main()

' do something here

End Sub

Configuration file format

228 Glink: Script Reference Gallagher & Robertson

Inheriting the GlinkApi object

The Glink.GlinkApi and Glink.Auto objects of the current session are passed on

to the script and are available under the names of "GlinkApi" and “Auto”,

e.g:

(VBS script)

'*****************

' VB Script Demo *

'*****************

Const TITLE = "Glink VBScript Demo"

Sub Main()

 Dim startPt

 Dim endPt

 Dim s

 set startPt = GlinkApi.getCursor

 startPt.x = 1

 set endPt = GlinkApi.getCursor

 endPt.x = endPt.x - 1

' pick text from start of line to cursor pos (-1)

 S = GlinkApi.getString (startPt, endPt)

 Call Msgbox("Current line of text is: " & S,

vbInformation, TITLE)

End Sub

 Configuration file format

Gallagher & Robertson Glink: Script Reference 229

(VScript script)

//***************

// JScript Demo *

//***************

function Main()

{

 var startPt;

 var endPt;

 var s;

 startPt = GlinkApi.getCursor();

 startPt.x = 1;

 endPt = GlinkApi.getCursor();

 endPt.x = endPt.x - 1;

// pick text from start of line to cursor pos (-1)

 S = GlinkApi.getString (startPt, endPt);

 endPt = GlinkApi.getCursor();

 GlinkApi.sendKeys ("1", endPt);

 GlinkApi.sendCommandKey (55); // TRANSMIT key

}

Please note that it is not recommended that you call the

GlinkApi.scriptFile() or GlinkApi.scriptCommand() methods

from a VBS or Jscript as you will most certainly encounter synchronization and

even reentrancy problems because of their simultaneous execution.

Passing input parameters

You pass input parameters to the VBScript or JScript in exactly the same way as

you would a Glink script using parenthesis or using the PARAM script command:

"Myscript" param1 param2

The Main() procedure will receive these parameters as one string. You then

need to add this input parameter string to the Main() procedure:

Function Main(Param)

 Msgbox Param, vbInformation, "Title"

 Main = "Thank you for calling"

Configuration file format

230 Glink: Script Reference Gallagher & Robertson

End Function

Here is an extract taken from the vbs.sub and word.vbs files delivered in

the $GLINK\Scripts\Demo directory:

(Glink Script, vbs.sub)

Assign %demodir "c:\glwin\scripts\demo"

Call ("'" %demodir "\word.vbs" "' " %demodir

"\glinkpro.doc")

or

Assign %demodir "c:\glwin\scripts\demo"

Param (%demodir "\glinkpro.doc")

Call (%demodir "\word.vbs")

 (VBS script, word.vbs)

Sub Main(DocName)

 Dim myWord

 GlinkApi.setVisible (false)

 Set myWord = CreateObject("Word.Application")

 myWord.Visible = True

 myWOrd.Documents.Open DocName

 ' do something here....

 myWord.Quit

 set myWord = nothing

End Sub

Return values

Return values from a VBScript or JScript are returned to Glink in the $GPARAM

internal script variable. You need to define Main()as a function and return a

value. The VBS example shown here will display "Hello world" in a

message box and when control is returned to Glink "Thank you for

calling" will be displayed.

 Configuration file format

Gallagher & Robertson Glink: Script Reference 231

(Glink script)

Param ("Hello world")

Call ("param.vbs")

Show $GPARAM

(VBS script)

Function Main(Param)

 Msgbox Param, vbInformation, "Title"

 Main = "Thank you for calling"

End Function

Configuration file format

232 Glink: Script Reference Gallagher & Robertson

Configuration file format

This table lists the data elements in the Glink configuration file, and may be used

for 'expert' manipulation of the file contents from scripts, using the CRDB,

CREAD, CFIX and CFXW script commands. The following data types are used:

byte single 8-bit byte

char single 8-bit character

bool single byte, 0 = false, 1 = true

int 2 bytes, low order byte first

char[n] array of n characters

int[n] array of n integers

string[n] Pascal string format, leading byte contains string length

Some examples of how to manipulate the various types of data are provided at

the end of this appendix.

Units throughout are as in GLINK setup menus unless otherwise noted.

NOTE
If you are running on a system with long file names and Glink is
enabled for use of these, then file names in the configuration file
are saved on an additional file with the same name as the original
configuration file and a suffix of '.ini.glinkdata' (for example

C:\GLWIN\DEF.glinkconfig.ini.glinkdata). This type of

field is marked with a note in the form (xx*) in this list, where xx is
the identifier used for the option in the INI file. These fields may

not be modified with CFIX or CFXW.

 Configuration file format

Gallagher & Robertson Glink: Script Reference 233

Offset Length Format Contents

0 2 int Baud rate divided by 10

2 1 byte Parity/format
0=7E. 1=8N, 2=7O, 3=8E, 4=8O

3 1 bool Initial echoplex setting

4 1 byte Current emulation mode
0=VIP7800, 1=ANSI, 2=Prestel, 3=Minitel,

4=VT102/220, 5=VIP7700, 6=DKU7107,

7=IBM3270, 8=DKU7102, 9=IBM5250,

10=IBM3151

5 1 byte 7200 attributes
0=no, 1=yes, 2=extended

6 1 bool Initial roll mode setting

7 4 char[4] Enquiry answer string

11 1 bool TAPI controls modem

12 1 bool Initial auto lf setting

13 2 int Comms pacing

15 1 bool Hold DTR in local mode

16 1 byte Flow control
0=none, 1=DTR, 2=RTS, 3=Xon-Xoff

17 1 bool 'Double graphics'

18 1 byte Cursor type
0=line, 1=blink, 2=block

19 1 byte Screen update type
0=direct, 1=retrace, 2=Bios

20 1 byte Default screen attribute

21 1 byte Default status line attribute

22 14 - <not used>

36 1 byte Alarms after file transfer

37 1 byte Wait after transfer
0=never, 1=always, 2=when failed

38 1 bool Silent mode

Configuration file format

234 Glink: Script Reference Gallagher & Robertson

Offset Length Format Contents

39 2 int Commsport
0 = COM0, 1-4 = COM3-4, 5-12 = SERIAL1-8,

13-14 = MM4 COM3-4, 15-16 = EVEREX COM3-

4

41 1 bool Reset on Clear

42 1 char Kermit host quote character

43 1 bool Short screen dump

44 1 bool Suppress high intensity

45 1 byte Kermit pacing

46 1 byte Underline simulate attribute

47 1 byte Kermit timeout

48 1 byte Kermit retries

49 1 bool Inverted screen option

50 1 bool Suppress clock update

51 1 bool Escape is F7

52 4 string[3] 8bit keyboard file

56 1 - <not used>

57 1 - <not used>

58 1 bool Suppress error messages

59 1 bool Arabic mode

60 1 bool EGA underline option

61 1 bool Allow long packets

62 1 bool Suppress welcome message

63 1 bool File overwrite option

64 1 bool ASC expand blank lines

65 1 char ASC upload pace character

66 2 int ASC upload character pacing

68 2 int ASC upload line pacing

 Configuration file format

Gallagher & Robertson Glink: Script Reference 235

Offset Length Format Contents

70 1 byte ASC upload CR translation
0 = strip, 1=CR, 2=LF, 3=CRLF

71 1 byte ASC upload LF translation
0 = strip, 1=CR, 2=LF, 3=CRLF

72 1 byte 0=EOT delimiter, 1=ETX delimiter

73 1 bool Add CRLF in SSM option

74 1 bool Initial space suppression option

75 1 bool Initial TX-RET setting

76 1 bool 0=CHAR initially, 1=TEXT initially

77 1 bool Auto tabbing option

78 1 bool Extended status option

79 1 bool Initial block mode setting

80 1 byte Pre-print controls
0=CR, 1=CRLF, 2=CRFF, 3=CRVT

81 1 byte Post-print controls
0=CR, 1=CRLF, 2=CRFF, 3=CRVT

82 1 - <not used>

83 1 bool Host Xoff option

84 1 bool Suppress parity errors

85 4 string[3] Seven-bit keyboard file

89 1 bool Eight-bit host option

90 41 string[40] Modem init string

131 17 string[16] Modem dial string

148 17 string[16] Modem on-hook string

165 17 string[16] Modem off-hook string

Configuration file format

236 Glink: Script Reference Gallagher & Robertson

Offset Length Format Contents

182 1 byte Communications interface
9=G&R NetBIOS, 13=IBM LANACS, 16=Eicon,

19=raw NetBIOS, 31=Windows, 33=DNTD

gateway,

38=Windows Sockets, 40=none, 46=DNTD/SPX,

47=IC,

48= G&R SPX, 49=Atlantis TSA V8, 51=ICC,

52=Shiva V8, 53=Cirel VTI3, 54=Cirel FPX,

55=Eicon TGX, 57=Telephony, 58=GLAPI

183 1 bool Constant speed modem

184 1 byte <not used>

185 1 bool Start in dialing directory

186 2 int Commport base address

188 1 byte Commport IRQ number

189 1 byte Wait before dialing

190 1 byte Pause between dials

191 4 string[3] Keyboard layout file

195 2 int Xon-Xoff timeout

197 1 bool Add Ctrl-Z option

198 1 bool ANSI use high intensity

199 2 int 'noise level'

201 2 int Printer number
-1=print on file, 0=LPT1, 1=LPT2, 2=LPT3

203 1 bool Report printer busy

204 2 int Comms buffer size

206 31 string[30] DNTD Host InsID

237 3 - <not used>

240 1 bool BIOS scroll option

241 650 <internal> macro strings

891 25 - <not used>

 Configuration file format

Gallagher & Robertson Glink: Script Reference 237

Offset Length Format Contents

916 1 byte Default download protocol
0=ascii, 1=Kermit text, 2=Kermit binary,

3=Xmodem, 4=Ymodem, 5=Ymodem batch,

6=Ymodem-G, 7=Modem7, 8=Telink, 9=Zmodem,

10=CIS-B

917 1 bool Strip parity

918 1 bool CLR saves in scrollback

919 1 bool Host name in status line

920 5 char[5] colors first level window

925 5 char[5] colors second level window

930 5 char[5] colors third level window

935 5 char[5] colors fourth level window

940 1 bool no pseudocolumn 81

941 62 byte[62] VIP attribute mapping table

1003 1 bool Auto LF in

1004 2 - <not used>

1006 1 bool Simple dialing option

1007 1 bool CTS handshake

1008 1 - <not used>

1009 38 int[19] User config menu choices

1047 1 bool Clock shows time online

1048 1 - <not used>

1049 1 bool <not used>

1050 1 bool Call logging

1051 1 bool Dialing directory password disable

1052 1 bool Comments on call log

1053 1 bool Lock dialing directory

1054 1 byte Sync poll address

Configuration file format

238 Glink: Script Reference Gallagher & Robertson

Offset Length Format Contents

1055 1 byte Mouse sensitivity X

1056 1 byte Mouse sensitivity Y

1057 2 int Script buffer size

1059 2 int Max script variables

1061 25 string[24] Print on file name (PN*)

1086 25 string[24] Pre-print filename (PN1*)

1111 25 string[24] Post-print filename (PN2*)

1136 25 - <not used>

1161 1 bool Constant reminders

1163 2 int Max Kermit packet size

1164 2 int Max Kermit window size

1166 1 bool ANSI 25-line mode

1167 1 bool Optimize comms option

1168 1 bool Enter always transmits

1169 1 char Kermit packet header character

1170 1 bool Non standard FTRAN

1171 1 bool Remove printer deletes

1172 1 byte X.25 user group

1173 1 char Telnet break character

1174 1 bool Ctrl-Z is end of file

1175 2 int Max menu items in scripts

1177 1 byte Printer translation option
0=US, 1=UK, 2=HOL, 3=FIN, 4=FR 5=FRC,

6=GER, 7=IT, 8=NOR, 9=SPA, 10=SWE, 11=SWI,

12=DEN, 13=JAP

1178 1 bool Reset modem on dial

1179 1 bool Save aborted downloads

1180 25 string[24] X.25 user data

 Configuration file format

Gallagher & Robertson Glink: Script Reference 239

Offset Length Format Contents

1205 25 string[24] Server target (LANACS)

1222 1 byte Logical channel

1223 1 bool Capture delimiter is CR

1224 1 bool Suppress printer transliteration

1225 1 byte Eicon (and other) port number

1226 61 string[60] Appointments directory (AD*)

1287 1 byte UVTI interrupt

1288 1 bool SISO encoding for eightbit

1289 1 bool Suppress status line

1290 1 byte Menu shadow type

1291 32 byte[32] Configuration locks

1323 1 bool No file name translation

1324 1 bool Ignore remote commands

1325 1 byte OSI interrupt number

1326 1 bool Non-linear forms

1327 1 bool Small transfer window

1328 33 string[32] X.25 facilities

1329 1 bool Enable FIFO on UART

1362 1 bool Disallow status line lock

1363 1 byte Mouse cursor type
0=Default, 1=Diamond, 2=Block, 3=Blink

1364 1 bool Destructive backspace

1365 25 string[24] Dial abbreviation A

1390 25 string[24] Dial abbreviation B

1415 25 string[24] Dial abbreviation C

1440 25 string[24] Dial abbreviation D

1465 25 string[24] Dial abbreviation E

Configuration file format

240 Glink: Script Reference Gallagher & Robertson

Offset Length Format Contents

1490 25 string[24] Dial abbreviation F

1515 1 bool Use DPS8 compression (FTRAN)

1516 2 int X.25 Permanent VC number

1518 17 string[16] X.25 calling address

1535 33 string[32] LAN server name

1568 1 bool Typeahead mode option

1569 1 bool Print log all line wrap

1570 1 - <not used>

1571 41 string[40] TSM directory (TSM*)

1612 1 bool TSM enable

1613 1 byte Kermit tab expansion (0=off)

1614 17 string[16] Extra modem connect string

1631 17 string[16] Extra modem OK string

1648 1 bool Override host packet size

1649 1 byte Cirel/Atlantis card number

1650 1 byte Cirel cluster number

1651 41 string[40] Extra modem init string

1692 1 bool Two-wire sync connection

1693 1 bool Long quiescent frame

1694 1 byte Atlantis interrupt number

1695 1 bool Ignore carrier status

1696 1 byte Physical channel (Atlantis)

1697 33 string[32] ANSI answerback

1730 15 string[14] Telnet reply to enquiry

1745 1 byte Windows start mode
0=default, 1=normal, 2=icon, 3=maxi

1746 1 byte Windows start X position

 Configuration file format

Gallagher & Robertson Glink: Script Reference 241

Offset Length Format Contents
0=default, 1=left, 2=right, 3=center, 4=current

1747 1 byte Windows start Y position
0=default, 1=top, 2=bottom, 3=center, 4=current

1748 1 byte Windows initial font size, X

1749 1 byte Windows initial font size, Y

1750 1 - <reserved>

1751 1 bool DEC Pathworks

1752 1 bool Windows menu bar

1753 2 int Windows printer timeout

1755 1 bool Windows print direct

1756 1 - <not used>

1757 17 - <not used>

1774 1 bool Windows print draft mode

1775 1 bool Windows popup dial

1776 1 bool Telnet binary session

1777 1 byte Windows exit confirmation
0=always, 1=when connected, 2=never

1778 1 bool Telnet use CR-NUL

1779 1 bool Windows host name in title bar

1780 1 byte Kermit quoting
0=default, 1=ON, 2=OFF

1781 4 string[3] Kermit keyboard file

1785 1 bool Windows ASCII OEM transfer

1786 1 - <reserved>

1787 1 - <reserved>

1788 25 string[24] Host file transfer command

1813 1 bool Windows VT102/220 function keys

1814 1 bool ANSI erase with default background

Configuration file format

242 Glink: Script Reference Gallagher & Robertson

Offset Length Format Contents

1815 1 bool Use internal Zmodem

1816 1 bool PNC mode

1817 1 bool Use Zmodem compression

1818 1 bool Use Zmodem recovery

1819 1 bool Use Zmodem transparent

1820 1 bool Use compressed context files

1821 1 byte Disconnect action
0=None, 1=Terminate, 2=Reconnect

1822 1 byte TCP/IP protocol
0=Telnet, 1=SNI, 2=NCR, 3=DNTD gateway,

4=Raw TCP/IP, 5=DIWS gateway, 6=DSA gateway,

11=rlogin, 12=TNVIP, 13=TN3270, 14=TN5250

1823 2 int Screen update threshold (chars)

1825 1 bool Use INT5A for Eicon NABIOS

1826 1 bool Function keys send CR

1827 1 - <reserved>

1828 1 byte XON character

1829 1 byte XOFF character

1830 50 <internal> ANSI mappings

1880 1 - <reserved>

1881 1 byte Initial font 132 cols, X

1882 1 byte Initial font 132 cols, Y

1883 1 byte Initial font 40 cols, X

1884 1 byte Initial font 40 cols, Y

1885 1 - <reserved>

1886 64 <internal> Macro offsets

1950 2 word Typeahead wait

1952 2 word Typeahead idle

 Configuration file format

Gallagher & Robertson Glink: Script Reference 243

Offset Length Format Contents

1954 2 int TX-EDT buffer size

1956 1 - <reserved>

1957 1 byte Printer character set
0=PC/OEM, 1=ANSI, 2=HP Roman, 3=PC/OEM

(x)

1958 16 byte[16] Configuration locks

1974 1 - <reserved>

1975 1 byte VIP7700 compatibility mode
0=normal, 1=ITT Courier, 2=Thomas box

1976 1 - <not used>

1977 1 bool Don't show spaces in 7700 forms

1978 1 bool Restrict 7700 cursor movement

1979 1 bool X.25 raw mode

1980 1 bool Telnet use IP for break

1981 13 string[12] Host alarm sound file (HW*)

1994 13 string[12] Emulator alarm sound file (GW*)

2007 13 string[12] File transfer sound file (XW*)

2020 13 string[12] Connect sound file (CW*)

2033 13 string[12] File transfer failed sound file (BW*)

2046 2 int Saved window X position

2048 2 int Saved window Y position

2050 2 int Saved scrollback window X position

2052 2 int Saved scrollback window Y position

2054 1 byte Initial screen width for ANSI mode

2055 1 byte Initial screen width for VT102/220 mode

2056 1 byte Initial screen width for VIP7700 mode

2057 1 byte Initial screen width for VIP7800 mode

2058 1 byte Initial screen width for Minitel mode

Configuration file format

244 Glink: Script Reference Gallagher & Robertson

Offset Length Format Contents

2059 1 byte Initial screen width for Prestel mode

2060 1 byte Initial screen width for IBM3270 mode

2061 1 byte Initial screen width for DKU7107 mode

2062 1 byte Screen update threshold (lines)

2063 1 - <not used>

2064 1 bool Play sound files asynchronously

2065 1 bool Host autotabbing

2066 1 byte Initial number of buttons on bar

2067 1 byte Initial button rows

2068 1 bool Use status bar

2069 1 bool Use toolbar

2070 1 bool Sticky roll mode

2071 1 byte TCP block size (divided by 16)

2072 1 byte TCP block delay (milliseconds)

2073 1 bool Number of items in toolbar

2074 40 int[20] Toolbar bitmap references

2114 40 int[20] Toolbar function references

2154 1 byte Minimum length to save for EDIT mode

2155 1 - <reserved>

2156 1 byte IBM3270 model
0=3279-2, 1=3279-3, 2=3278-1, 3=3278-2,

4=3278-3, 5=3278-4, 6=3278-5, 7=3287-1,

8=3279-2E, 9=3279-3E, 10=3278-1E, 11=3278-2E,

12=3278-3E, 13=3278-4E, 14=3278-5E

2157 1 byte IBM3270 transliteration
0=international, 1=UK, 2=US, 3=Swedish-Finnish,

4=French, 5=French-Canadian, 6=Austria-Germany,

7=Italian, 8=Denmark-Norway, 9=Spain,

10=Swedish-Finnish alternate, 11=Belgium,

12=Denmark-Norway alternate, 13=Japan,

14=Brazil, 15=Portugal, 16=Spain alternate,

 Configuration file format

Gallagher & Robertson Glink: Script Reference 245

Offset Length Format Contents
17=Spanish-speaking, 18=Austria-Germany

alternate

2158 1 - <not used>

2159 2 int Saved window horizontal size

2161 2 int Saved window vertical size

2163 2 int Saved scrollback window horizontal size

2165 2 int Saved scrollback window vertical size

2167 2 - <not used>

2169 17 string[16] IBM3270 LU name

2186 96 internal Screen color mappings

2282 1 bool Use special Winsock fix for PC-NFS

2283 1 bool Preserve keyboard state

2284 1 bool Respect OEM keyboard mappings

2285 1 bool Don't check comm port existence

2286 1 bool Use line-oriented screen marking

2287 1 bool Use comms notifications

2288 1 bool Use toolbar tips

2289 1 bool Variable fields in 3D

2290 1 bool DKU blink/blank with ^/~

2291 1 bool DKU show ^/~ in blink/blank

2292 1 bool DKU cursor straight up/down

2293 1 bool DKU allow cursor out of field

2294 1 bool DKU use extended character set

2295 1 bool DKU allow lowercase to host

2296 1 bool DKU new line after XMT

2297 1 bool DKU SDP attributes

2298 1 bool DKU wrap on page overflow

Configuration file format

246 Glink: Script Reference Gallagher & Robertson

Offset Length Format Contents

2299 1 byte DKU color mode
0=1M, 1=4A, 2=4B, 3=7Q, 4=7G

2300 3 string[2] DKU printer ID

2303 2 int DKU printer columns

2305 2 int DKU printer lines/page

2307 2 int DKU printer cps

2309 12 byte[12] DKU unshifted FKC types
0=Send, 1=Send Page, 2=Display

2321 24 char[12,2] DKU unshifted FKC function codes

2345 1 byte DKU model
0=DKU7107, 1=DKU7211

2346 1 bool Font follows window

2347 1 bool Use Windows fonts

2348 1 bool Use caption bar

2349 1 byte TGT type
0=X25, 1=VIPLS, 2=VIPX25, 3=FPM

2350 1 bool Use print ctl for host data

2351 33 string[32] Windows font name

2384 1 bool New line after transmit

2385 1 bool ANSI BBS compatibility mode

2386 1 bool Don't use NetBIOS callbacks

2387 1 bool DKU use SI/SO for printing

2388 1 byte Screen paint algorithm
0=spread, 1=truncate, 2=squash

2389 2 int Case 6000 device type

2391 1 bool Suppress use of CTL3D

2392 1 - <reserved>

2393 12 byte[12] DKU shifted FKC types
0=Send, 1=Send Page, 2=Display

 Configuration file format

Gallagher & Robertson Glink: Script Reference 247

Offset Length Format Contents

2405 24 char[12,2] DKU shifted FKC function codes

2429 1 bool Printer orientation
0=Default, 1=Auto, 2=Portrait, 3=Landscape

2430 1 byte <reserved>

2431 1 byte Stay-on-top option
0=Normal, 1=On top when icon, 2=Always on top

2432 1 byte Windows font style
Top bit = italic, bottom 7 = weight / 10

2433 1 byte Host printing usage

0=GUI, 1=Windows(text), 2=File(text)

2434 33 string[32] Printer font name

2467 1 byte Printer font style
Top bit = italic, bottom 7 = weight / 10

2468 1 byte Printer select
0=session, 1=current, 2=permanent

2469 81 string[80] Printer name,driver,port (PI*)

2550 2 int Printer font height (tenths of a point)

2552 4 long SPX network number

2556 1 bool <reserved>

2557 1 bool DKU wraparound tabbing

2558 1 bool Reverse NumLock action for app keypad

2559 1 bool DKU extensions for VIE

2560 2 int Ggate keepalive interval (seconds)

2562 1 bool DKU right justify ignores spaces

2563 67 string[66] Download directory (DD*)

2630 67 string[66] Upload directory (UD*)

2697 17 string[16] Rlogin userid

2714 1 bool Roll mode (DKU7107 only)

2715 1 byte Initial screen width for DKU7102 mode

Configuration file format

248 Glink: Script Reference Gallagher & Robertson

Offset Length Format Contents

2716 24 byte[24] Macro mappings for DKU function keys

2740 2 int Print left margin

2742 2 int Print right margin

2744 2 int Print top margin

2746 2 int Print bottom margin

2748 1 byte Print margin units
0=dots, 1=inches, 2=cm, last two saved in hun-

dredths

2749 33 string[32] Socks server address

2782 1 bool Suppress 3270 printing

2783 33 string[32] Alternate server address for Ggate

2816 2 int Connect timeout for Winsock TCP/IP

2818 1 bool Use random connect for Ggate

2819 2 int Delay before alternate connect for Ggate

2821 1 byte Initial emulation mode (Windows only)
0=VIP7800, 1=ANSI, 2=Prestel, 3=Minitel,

4=VT102/220, 5=VIP7700, 6=DKU7107,

7=IBM3270, 8=DKU7102, 9=IBM5250,

10=IBM3151

2822 1 bool Tab key sends HT in DKU7102 mode

2823 1 bool Extended TN3270 enable

2824 1 bool TN3270 LU name is associated

2825 1 char Kermit control quote character

2826 1 - <reserved>

2827 41 string[40] Secondary TSM forms directory (TS2*)

2868 1 bool Use context style help only

2869 1 byte Turn delay in tenths

2870 1 bool Use immediate clipboard rendering

2871 1 bool Suppress print logging of FF char in 7800

 Configuration file format

Gallagher & Robertson Glink: Script Reference 249

Offset Length Format Contents

mode

2872 1 bool Sets font for status bar (Windows only)
(0=ANSI variable font, 1=system font, 2=device

default font, 3=ANSI fixed font, 4= system fixed

font, 5=OEM fixed font)

2873 1 bool Suppress all use of EM as single shift

2874 1 bool Apply 'Norwegian ASCII' to text as well

as controls.

2875 1 bool Send $*$ messages as data rather than

command (Ggate)

2876 1 bool Use keyboard lock where typeahead

would normally be applied

2877 1 bool Apply 'EmuLink' logic to printed output

from host

2878 1 bool Print fields even though they do not have

a 'printable' attribute

2879 1 byte DDE comms wait timeout (milliseconds)

2880 1 bool Suppress AUX port printing

2881 1 bool Capture line wraps

2882 1 bool Smooth scroll in scrollback

2883 1 bool Suppress 3270 locked keyboard

2884 1 byte Use Print SS2 characters (0=none, 1=normal,

2=special)

2885 1 byte IBM5250 model (0=IBM3179_2,

1=IBM3180_2, 2=IBM3196_A1, 3=IBM3477_FC,

4=IBM3477_FG, 5=IBM5251_11, 6=IBM5291_1,

7=IBM5292_2, 8=IBM5555_C01,

9=IBM5555_B01, 10=IBM3812_1,

11=IBM5553_B01)

2886 1 byte IBM3151 model (0=IBM3151_11,

1=IBM3151_31, 2=IBM3151_41, 3=IBM3151_51,

4=IBM3151_61)

2887 36 byte[36] IBM3151 FKC function codes

2923 36 byte[36] IBM3151 FKC types (0=Send, 1=Display)

Configuration file format

250 Glink: Script Reference Gallagher & Robertson

Offset Length Format Contents

2959 1 bool Use colors for printing

2960 1 bool <not used>

2961 1 bool Local printing usage

0=GUI, 1=Windows(text), 2=File(text)

2962 1 byte Print lines per page

2963 2 int Print line spacing (0=auto, 65535=fill page,

n=exactly)

2965 1 byte Print line spacing unit (0=Dot, 1=Inch, 2=Cm,

3=Lpi, 4=Lpcm)

2966 1 byte Print characters per line

2967 2 int Print character spacing (0=auto, 65535=fill

page, n=exactly)

2969 1 byte Print character spacing unit (0=Dot, 1=Inch,

2=Cm, 3=Cpi, 4=Cpcm)

2970 2 Int Scrollback pages

2972 96 Internal Print color mappings

3068 1 Bool Copy/paste with Ctrl+C/V

3069 1 Char TCS ACK, positive ACK (default 'a')

3070 1 Char TCS PGOF, logical NAK (default 'b')

3071 1 Char TCS NAK, physical NAK (default 'c')

3072 1 Byte TCS enable (0=inactive, 1=enable, 2=disable)

3073 41 string[40] TCS directory (TCS*)

3114 1 <internal> Config version update state

3115 25 String[24] Print on file name (PD*) (physical)

3140 1 Bool Print to file (physical)

3141 1 Bool Print to file (Windows)

3142 1 Byte IND$FILE command (0=current, 1-127=tab

128-255=backtab)

3143 1 Bool Don’t strip underline in 3D variable fields

 Configuration file format

Gallagher & Robertson Glink: Script Reference 251

Offset Length Format Contents

3144 1 Bool Don’t use Windows 3D colors on variable

fields

3145 1 Bool Don't fix DKU attributes

3146 1 Byte Enforce check for data in last line on 7800

IL command (0x0002 from host, 0x0001

from keyboard)

3147 1 Bool Paste/Upload insert new line

3148 1 Byte Paste/Upload max chars

3149 1 Bool Paste/Upload wrap on last word

3150 1 Byte <not used>

3151 1 Bool Stops PPP auto-dialup box display
(Win32)

3152 1 Bool Local file overwrite

3153 1 Char Default monetary character for numeric

edited fields (7800)

3154 1 Byte Number of recently used items to remem-

ber (default=10)

3155 1 Byte 3270 numeric checking (0=none, 1=strict,

2=emulator, 3=relaxed)

3156 1 Bool Use XMT (not CR) for Enter in TX-RET

mode when Enter=XMT

3157 1 Bool Suppress hide attribute for 3270

3158 32 Internal 3D color mappings

3190 1 Bool Don’t use Windows caret in variable

fields

3191 1 Byte Font options, 0x01 short underline, 0x02

Zero w/dot, 0x04 Zero w/slash

3192 1 Byte Ruler type, 0=none, 1=horiz, 2=vert,

3=crosshair

3193 7 String[6] Double-click delimiters (DC*)

Configuration file format

252 Glink: Script Reference Gallagher & Robertson

Offset Length Format Contents

3200 1 Bool DKU extended ANSI SGR attributes

3201 1 Byte Use printer timeout, 0x01 local, 0x02 host

3202 1 Bool Suppress leading blank print page

3203 1 Bool Don't allow cursor move with left mouse

click

3204 1 Bool Don't let host move 3270 graphics cursor

3205 1 Bool Don't send 3270 graphic mouse click to

host

3206 1 Byte 3270 graphics cursor type (0=bw target,

1=XOR target, 2=bw diagonal, 3=XOR diagonal,

4=bw cross, 5= XOR cross)

3207 8 byte[8] Security options

3215 1 Bool 5250 Field exit keys on numeric pad

3216 etb/etx on 7800 block transmit (0=std, 1=etb,

2=etx)

3217 1 Bool Use old toolbar format

3218 41 String[40] Wallpaper file name (WP*)

3259 2 Int Left window frame margin

3261 2 Int Right window frame margin

3263 2 Int Top window frame margin

3265 2 Int Bottom window frame margin

3267 1 Bool Margin is specified as percent

3268 1 Bool Stretch wallpaper to fit screen

3269 1 Bool Don't scroll wallpaper with text

3270 41 String[40] Frame wallpaper file name (FP*)

3311 1 Bool Keep aspect ratio (wallpaper)

3312 1 Bool Keep aspect ratio (frame wallpaper)

3313 1 Bool Center wallpaper

 Configuration file format

Gallagher & Robertson Glink: Script Reference 253

Offset Length Format Contents

3314 1 Bool Center frame wallpaper

3315 1 byte Auto function keys (bit 0x01=Fnn, bit

0x02=PFnn, bit 0x04=Pann, bit 0x08=S/Fnn, bit

0x10=nn)

3316 1 byte Auto function key text extract (bit 0x01=add

text after '=', bit 0x02=show text only)

3317 1 Bool Don't show 3D frame for frame wallpaper

3318 1 byte <not used>

3319 2 Int Saved toolbar X position

3321 2 Int Saved toolbar Y position

3323 2 Int Saved toolbar X extent

3325 2 Int Saved toolbar Y extent

3327 2 Int Saved keyboard bar X position

3329 2 Int Saved keyboard bar Y position

3331 2 Int Saved keyboard bar X extent

3333 2 Int Saved keyboard bar Y extent

3335 24 Int[12] Toolbar bitmap references 21-32

3359 24 Int[12] Toolbar function references 21-32

3383 41 String[40] Starting script name (SS*)

3424 2 Int Saved function key bar X position

3426 2 Int Saved function key bar Y position

3428 2 Int Saved function key bar X extent

3430 2 Int Saved function key bar Y extent

3432 1 Bool Save toolbar position

3433 1 Bool Use keyboard bar

3434 1 Bool Use function key bar

3435 1 Bool Do DKU printer tabbing

Configuration file format

254 Glink: Script Reference Gallagher & Robertson

Offset Length Format Contents

3436 1 Bool Use secure sockets

3437 1 Bool Verify secure server

3438 1 Bool Verify client certificate

3439 4 DWORD Secure protocol

3443 4 DWORD Secure key exchange protocol

3447 13 String[12] Client certificate name (SC*)

3460 1 Bool Verify server name

3461 1 Bool Verify against specific name

3462 13 String[12] Name to verify against (SSC*)

3475 13 String[12] Default FTP host (FH*)

3488 1 Byte Dialog box font size (points)

3489 2 Int Force high port number for TCP
(value = lowest to assign)

3491 1 Byte No copy options for hidden fields
(bit 0x01=Clipboard, bit 0x02=Script, bit

0x04=API, bit 0x08=DDE)

3492 2 Bool Font codepage

3494 1 Bool DKU, Wincom compatibility

3495 1 Bool TNVIP, don’t wait for turn

3496 1 Bool Paste as block

3497 1 Bool Include spaces in rectangles

3498 13 String[12] SSH private key (PK*)

3511 13 String[12] SSH password (PW*)

3524 1 Bool Suppress Ggate coname list request

3525 1 Bool Display 5250 errors in status bar

3526 1 Bool Don't expand ENV in filenames

3527 1 Byte Off centered graphics characters

3528 1 Bool Fast graphic resize, no halftones

 Configuration file format

Gallagher & Robertson Glink: Script Reference 255

Offset Length Format Contents

3529 41 String[40] Default DDE name

3570 1 Bool Keep insert mode on transmit (IBM only)

3571 1 Bool Disable keyboard unlock type ahead

3572 1 Char DKU RJF character

3573 1 Bool No telnet timing mark

3574 1 Byte Force SSH version
(Default=0, V1=1, V2=2)

3575 5 String[4] DGA local SCID

3580 1 Bool not used

3581 1 Byte DGA local DSA200 addr. 1

3582 1 Byte DGA local DSA200 addr. 2

3583 1 Bool not used

3584 1 Byte DGA remote DSA200 addr 1

3585 1 Byte DGA remote DSA200 addr 2

3586 1 Byte DGA connect mode
(Auto=0, TWAI=1, TWAA=2, TWSI=3, TWSA=4)

3587 16 Byte[16] More configuration locks

3603 17 String[16] SSHD server name

3620 1 Byte Plink options
(bit 0x01=hide plink, 0x02=user interactive,

0x04=password interactive)

3621 2 Word Plink initial socket port

3623 1 Bool Suppress SISO

3624 1 Bool No ligation

3625 1 Bool Arabic justify

3626 1 Byte Arabic numerics
(Default=0, Latin=1, Local=2)

3627 16 Rect Keyboard layout position

3643 1 Bool Extended char null

Configuration file format

256 Glink: Script Reference Gallagher & Robertson

Offset Length Format Contents

3644 1 Bool Special 7800 wrap

3645 13 String[12] QOS name

3658 1 Byte <reserved>

3659 1 Bool Don’t use themes

3660 11 String[10] IBM printer message queue name

3671 11 String[10] IBM printer message queue library

3682 1 Byte IBM printer font

3683 1 Char IBM printer form feed

3684 2 Word IBM printer buffer size

3686 1 Bool IBM printer transform

3687 15 String[14] IBM printer name

3702 1 Byte IBM printer paper 1

3703 1 Byte IBM printer paper 2

3704 1 Byte IBM printer envelope

3705 1 Bool IBM printer Ascii899

3706 2 Word IBM printer character set

3709 41 String[40] Glink caption (GT*)

3750 1 Bool Iconize to system tray

3751 1 Bool Save to scrollback on XMT

3752 2 Word Initial screen length

3754 2 Word <reserved>

3756 1 Bool UTF-8 encoding for host

3757 1 Bool <reserved>

3758 17 String[16] IBM 3270 print LU

3775 1 byte Thai validation (0=basic,1=none, 2=strict)

3776 1 Bool Thai no align

 Configuration file format

Gallagher & Robertson Glink: Script Reference 257

Offset Length Format Contents

3777 1 Bool Force old 3D background

3778 2 Word IBM 3270 alternate row size

3780 2 Word OIBM 3270 alternate column size

3782 2 Word Button search left

3784 2 Word Button search right

3786 2 Word Button search top

3788 2 Word Button search bottom

3790 1 Bool Use two-tone background

3791 1 Bool Enable SoftTerm commands

3792 32 Internal Colors for two-tone background

3824 1 Bool Full Unicode mode

3825 1 Bool Use SSH buffering

3826 1 Bool Don’t interpret VT MRC commands

3827 1 Bool Change font when host resizes

3828 1 Bool Check for upgrades

Example: Reading a byte

CRDB %1 47 * Kermit timeout value

MESSAGE ("Your Kermit timeout is " %1 " seconds.")

Example: Reading a byte with predefined meanings

CRDB %1 2 * parity setting

SHOW "Your parity setting is "

SWITCH %1

 CASE 0; MESSAGE "7 bit even."

 CASE 1; MESSAGE "8 bit none."

 CASE 2; MESSAGE "7 bit odd."

 CASE 3; MESSAGE "8 bit even."

 CASE 4; MESSAGE "8 bit odd."

 DEFAULT; MESSAGE "Invalid!"

ENDSWITCH

Example: Reading a boolean value

Configuration file format

258 Glink: Script Reference Gallagher & Robertson

CRDB %1 6 * initial roll mode setting

SHOW "Roll mode is initially "

SWITCH %1

 CASE 0; MESSAGE "OFF."

 CASE 1; MESSAGE "ON."

 DEFAULT; MESSAGE "Invalid!"

ENDSWITCH

Example: Reading a character

CREAD %1 1169 1 * Kermit packet header

FIX %1 * fix up for display

MESSAGE ("Your Kermit packet header is " %1 ".")

Example: Reading an integer

CRDW %1 0 * two byte line speed

MESSAGE ("You are configured to run at " %1 " bps.")

Example: Reading a character array

CREAD %1 7 4 * answer to ENQ

MESSAGE ("You are set up to answer ENQ with '" %1 "'")

Example: Reading a string

CRDB %1 891 * download dir, length byte

CREAD %2 892 24 * download dir, contents

SUBSTR %2 %2 1 %1 * truncate to correct length

MESSAGE ("Your download directory is '" %2 "'")

 Index

Gallagher & Robertson Glink: Script Reference 259

Index

$

$$TERM.SCR 8

B

Built-in variables 13

Button bar 38

C

Caret 6

Case sensitivity 13

Command line

parameters 13

Comments 7

Compiled scripts 7

Computations 12

add 34

calc 40

divide 61

multiply 116

subtract 166

Concatenating strings 11

Configuration directory 14

Constants 6

Control characters 6

Conventions 31

Current directory 13

D

Debugging 4, 57, 150, 164

Delimiters 150

Demo directory 14

dial directory

name 13

Dial directory

calling 60

comments 13

entry number 13

finding entries 59

linking scripts 3

manual dial 104

marking 61

modifying 54

password 16

phone number 16

read an entry 64

redial 137

result code 14

unmark entry 66

Direct execution 4

Disk space 14

Download directory 14, 64

Drag and drop 3

E

Editor name 14

Emulator mode 19

Emulator modes 111, 157

Encryption 7

Error level 14

Error message 14

Exponential format 12

F

File names

extension 2, 3

File variables 20

Files

appending 35

G

Glink directory 5, 15

GLWINOPT 3

Index

260 Glink: Script Reference Gallagher & Robertson

H

Help texts

button bar 39

Hexadecimal 6

Host initiation of scripts 3

Host message 15

Host name 15

I

Idle timer 15, 92, 154

Indirect variables 11, 20

Interfaces 52

L

Labels 4, 103

Limits 11, 12

M

Menu dialogs

domenu 62

fonts 110

menu 109

OK button 112

operations 112, 113

positioning 113, 114

redisplay 140

removal 171

removing 118

text lines 115

Menus

addmenu 34

buildmenu 37

context menus 48

delmenu 59

disabling 106

endbuild 68

sepmenu 147

Multiple commands 6

N

Named variables 12, 58

Nesting scripts 7

NetBIOS 13

Notepad 1

Numeric variables 12

O

Object files 8, 119

Octal 6

P

Parameters 4, 14, 16, 18

Password 16

Patterns 19, 64, 66, 127

Q

Quotes 6

R

result code 14

S

Screen dump 65

Script directories 5

Script directory 5, 15

Script files

general 1

Search rules 5

Sound 130

Starting a script 2

Startup script 3

Statistics 13

Status line 2

T

Terminate 4, 33, 91

Termination script 8

TN3270/5250 LU device 150

U

Upgrading scripts 8

Upload directory 17

 Index

Gallagher & Robertson Glink: Script Reference 261

User directory 15

User script directory 5, 15

V

Variables 11

Version testing 32

X

X.25 13

	Contents
	General
	Overview
	Starting a script
	Script directories
	Script file format
	Nesting of scripts
	Compiled scripts
	Termination script

	Script variables
	Normal variables
	Numeric variables
	Built-in variables
	Built-in variables
	The $STATUS variable
	The $STATUS variable

	Pattern variables
	File variables

	Script command categories
	Alphanumeric handling
	Compiler and debugging commands
	Configuration control
	Control structures
	Dial directory
	File I/O commands
	File I/O commands
	File transfer and control
	Host interaction commands
	Key definitions and handling
	Menu handling
	Screen and cursor control
	System-related commands
	Timing commands
	Timing commands
	User input commands
	Variable handling commands
	Windows-specific commands
	Commands for backwards compatibility

	Script commands
	The #ELSE directive
	The #ENDIF directive
	The #IFDEF directive
	The #IFDEF directive
	The #IFNDEF directive
	The #IFNDEF directive
	The ABORT command
	The ACTIVATE command
	The ADD command
	The ADDMENU command
	The ADMSHELL command
	The APPEND command
	The ASSIGN command
	The BEEP command
	The BEGIN command
	The BINARY command
	The BREAK command
	The BREAK command
	The BUILDMENU command
	The BUTTON command
	The BUTTON command
	The CALC command
	The CALC command
	The CALL command
	The CAPTURE command
	The CASE command
	The CD command
	The CFIX command
	The CFIX command
	The CFXW command
	The CHAIN command
	The CHANNEL command
	The CLEAR command
	The CMPNUM command
	The COMPARE command
	The COMPARE command
	The CONCAT command
	The CONFIG command
	The CONFIG command
	The CONNECT (modem) command
	The CONTEXT command
	The CONTEXT command
	The CONVERSE command
	The CONVERSE command
	The COPY command
	The CRDB command
	The CRDW command
	The CRDW command
	The CREAD command
	The CRLF command
	The CSWITCH command
	The CSWITCH command
	The CTYPE command
	The CURSOR command
	The CXRESTORE command
	The CXSAVE command
	The CXSAVE command
	The DBOX command
	The DCHANGE command
	The DDEADVISE command
	The DDEADVISE command
	The DDECLOSE command
	The DDEEXECUTE command
	The DDENAME command
	The DDENAME command
	The DDEOPEN command
	The DDEPOKE command
	The DDEREQUEST command
	The DDEREQUEST command
	The DEBUG command
	The DEFAULT command
	The DEFAULT command
	The DEFINE command
	The DELAY command
	The DELMENU command
	The DFIND command
	The DIAL command
	The DIAL command
	The DISCONNECT (modem) command
	The DIVIDE command
	The DIVIDE command
	The DMARK command
	The DOMENU command
	The DOMENU command
	The DOS command
	The DOSN command
	The DOWNLOAD command
	The DOWNLOAD command
	The DPATTERNS command
	The DREAD command
	The DSCREEN command
	The DSCREEN command
	The DTENTHS command
	The DTIME command
	The DUNMARK command
	The DUNMARK command
	The DVARIABLES command
	The DWHENS command
	The ECHO command
	The ECHO command
	The EIGHTBIT command
	The ELSE command
	The EMULATE command
	The EMULATE command
	The ENABLE command
	The ENDBUILD command
	The ENDIF command
	The ENDIF command
	The ENDSWITCH command
	The ENDWHILE command
	The ERASE command
	The ERRORGOTO command
	The EXECUTE command
	The EXISTS command
	The EXITSWITCH command
	The EXTRACT command
	The FCLOSE command
	The FCODE command
	The FILTER command
	The FIND command
	The FIND command
	The FIX command
	The FIX command
	The FLOC command
	The FLUSH command
	The FNDEXEC command
	The FNDEXEC command
	The FNEXT command
	The FOPEN command
	The FPOS command
	The FPOS command
	The FRDBLOCK command
	The FRDCHAR command
	The FRDLINE command
	The FSEARCH command
	The FSEARCH command
	The FSEEK command
	The FSIZE command
	The FSIZE command
	The FSKIP command
	The FTP command
	The FVERSION command
	The FWTBLOCK command
	The FWTBLOCK command
	The FWTLINE command
	The GETDATE command
	The GETENV command
	The GETFILE command
	The GETKEY command
	The GETLENGTH command
	The GETMACRO command
	The GETTIME command
	The GETVALUE command
	The GETVALUE command
	The GETWORD command
	The GOSUB command
	The GOTO command
	The GPARAM command
	The GPROFILE command
	The GPROFILE command
	The GWCONNECT command
	The HALT command
	The HALT command
	The HOST command
	The ICON command
	The IDLE command
	The IF command
	The INCLUDE command
	The INFILE command
	The INPC command
	The INPC command
	The INPUT command
	The INVISIBLE command
	The ISOCONNECT command
	The ISOCONNECT command
	The ISSERVICE command
	The KEYBOARD command
	The KEYBOARD command
	The KEYKERMIT command
	The KEYS command
	The LABEL command
	The LABEL command
	The LAYOUT command
	The LCASE command
	The LINE command
	The LOCAL command
	The LOG command
	The MANDIAL command
	The MARK command
	The MATCH command
	The MATCH command
	The MBAR command
	The MCURSOR command
	The MD command
	The MDIAL command
	The MENU command
	The MESSAGE command
	The MFONT command
	The MINIT command
	The MINIT command
	The MODE command
	The MOK command
	The MOK command
	The MONO command
	The MOP command
	The MOPC command
	The MOPC command
	The MOPTION command
	The MOVEWINDOW command
	The MOVEWINDOW command
	The MPOS command
	The MSGBOX command
	The MSGBOX command
	The MTEXT command
	The MULTIPLY command
	The MVSCROLL command
	The NAME command
	The NETCONNECT command
	The NETDISCONNECT command
	The NETDISCONNECT command
	The NEW command
	The NOMENU command
	The OBJECT command
	The OBJECT command
	The OEM command
	The OLE command
	The OLE command
	The ON command
	The ONLINE command
	The PACE command
	The PACE command
	The PARAM command
	The PARITY command
	The PATTERN command
	The PATTERN command
	The PAUSE command
	The PERFORM command
	The PICK command
	The PICK command
	The PLAY command
	The POPUP command
	The POPUP command
	The PORT command
	The POS command
	The POS command
	The PPROFILE command
	The PREMOTE command
	The PREMOTE command
	The PRINT command
	The PSET command
	The PUTFILE command
	The PUTFILE command
	The QUIT command
	The RATR command
	The RATR command
	The RCVLINE command
	The RCVTURN command
	The RD command
	The RDIAL command
	The RECEIVE command
	The RECS command
	The REMENU command
	The REMENU command
	The REN command
	The REPLACE command
	The RESET command
	The RETCALL command
	The RETURN command
	The RETURN command
	The RFORM command
	The RKEY command
	The ROLL command
	The ROLL command
	The RSBK command
	The RSCR command
	The SCAN command
	The SCAN command
	The SCREEN command
	The SECURE command
	The SECURE command
	The SEND command
	The SEPMENU command
	The SEPMENU command
	The SERVER command
	The SET command
	The SETMACRO command
	The SHELL command
	The SHOW command
	The SNDLINE command
	The SPEED command
	The SPLIT command
	The SPLIT command
	The STITLE command
	The STRACE command
	The STRIP command
	The STRIP command
	The SUBRIGHT command
	The SUBSTR command
	The SUBTRACT command
	The SUBTRACT command
	The SWITCH command
	The TCKEY command
	The TIMEOUT command
	The TITLE command
	The TRACE command
	The TRANSMIT command
	The TRANSMIT command
	The TRIM command
	The TRNLINE command
	The TRUNCATE command
	The TSMDIR command
	The UCASE command
	The UNMENU command
	The UNMENU command
	The UPLOAD command
	The URLSHOW command
	The WELCOME command
	The WHEN command
	The WHILE command
	The WINDOW command
	The WINDOW command
	The WKEY command
	The WKEY command

	The DBOX command
	General
	Dialog units
	Dialog box controls
	Dialog box controls
	Command summary

	Dialog box elements
	Automatic group boxes
	Syntax:
	Definition:
	Available options:
	Default options:

	Bitmap buttons
	Syntax:
	Definition:
	Examples:
	Available options:
	Default options:

	Bitmaps
	Syntax:
	Definition:
	Examples:
	Available options:

	Check boxes
	Syntax:
	Definition:
	Available options:
	Default options:

	Combo boxes
	Syntax:
	Definition:
	Available options:
	Available options:
	Default options:

	Centered text
	Syntax:
	Definition:
	Available options:
	Default options:

	Default pushbuttons
	Syntax:
	Definition:
	Available options:
	Default options:

	Edit text
	Syntax:
	Definition:
	Available options:
	Default options:

	End of group marker
	Syntax:
	Definition:
	Available options:

	End of horizontal group
	Syntax:
	Definition:
	Available options:

	End of vertical group
	Syntax:
	Definition:
	Available options:

	Group boxes
	Syntax:
	Definition:
	Available options:
	Default options:

	Horizontal group
	Horizontal group
	Syntax:
	Definition:
	Example:
	Available options:

	Icon buttons
	Syntax:
	Definition:
	Examples:
	Available options:
	Default options:

	Icons
	Syntax:
	Definition:
	Examples:
	Available options:

	List boxes
	Syntax:
	Definition:
	Comma-separated list
	Inline list
	File-based list
	Directory list
	Directory list
	Available options:
	Default options:

	Left justified text
	Syntax:
	Definition:
	Available options:
	Default options:

	Pushbuttons
	Syntax:
	Definition:
	Available options:
	Default options:

	Radio buttons
	Syntax:
	Definition:
	Available options:
	Default options:

	Right justified text
	Syntax:
	Definition:
	Available options:
	Default options:

	Size buttons
	Syntax:
	Definition:
	Example:
	Available options:
	Default options:

	Trackbars
	Syntax:
	Definition:
	Available options:
	Default options:

	Vertical group
	Syntax:
	Definition:
	Example:
	Available options:

	External interface
	Overview of extension DLL interface
	Using external functions in a script
	Programming external script functions
	Data types for the DLL
	C: character data
	C: character data
	H: handle data
	I: integer data
	L: long integer data
	O: script OK status
	O: script OK status
	S: structure data

	External values
	Search rules
	Examples of extension DLLs

	Script examples
	Simple login to bulletin board
	More complex login
	Login with error checking
	'Event-driven' login
	Menu-controlled script
	Menu-controlled script

	Running VBScript or JScript files
	Inheriting the GlinkApi object
	Inheriting the GlinkApi object
	Passing input parameters
	Return values

	Configuration file format
	Index

